Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Science ; 371(6524)2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33384351

RESUMEN

The circadian clock coordinates daily rhythmicity of biochemical, physiologic, and behavioral functions in humans. Gene expression, cell division, and DNA repair are modulated by the clock, which gives rise to the hypothesis that clock dysfunction may predispose individuals to cancer. Although the results of many epidemiologic and animal studies are consistent with there being a role for the clock in the genesis and progression of tumors, available data are insufficient to conclude that clock disruption is generally carcinogenic. Similarly, studies have suggested a circadian time-dependent efficacy of chemotherapy, but clinical trials of chronochemotherapy have not demonstrated improved outcomes compared with conventional regimens. Future hypothesis-driven and discovery-oriented research should focus on specific interactions between clock components and carcinogenic mechanisms to realize the full clinical potential of the relationship between clocks and cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinogénesis/genética , Relojes Circadianos/genética , Cronoterapia de Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Reparación del ADN/genética , Genes Supresores de Tumor , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Oncogenes , Polimorfismo Genético
2.
J Biol Chem ; 294(32): 11960-11968, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31217280

RESUMEN

Cisplatin is the most commonly used chemotherapeutic drug for managing solid tumors. However, toxicity and the innate or acquired resistance of cancer cells to the drug limit its usefulness. Cisplatin kills cells by forming cisplatin-DNA adducts, most commonly the Pt-d(GpG) diadduct. We recently showed that, in mice, repair of this adduct 2 h following injection is controlled by two circadian programs. 1) The circadian clock controls transcription of 2000 genes in liver and, via transcription-directed repair, controls repair of the transcribed strand (TS) of these genes in a rhythmic fashion unique to each gene's phase of transcription. 2) The excision repair activity itself is controlled by the circadian clock with a single phase at which the repair of the nontranscribed strand (NTS) and the rest of the genome takes place. Here, we followed the repair kinetic for long periods genome-wide both globally and at single nucleotide resolution by the Excision Repair-sequencing (XR-seq) method to better understand cisplatin DNA damage and repair. We find that transcription-driven repair is nearly complete after 2 days, whereas weeks are required for repair of the NTS and the rest of the genome. TS repair oscillates in rhythmically expressed genes up to 2 days post injection, and in all expressed genes, we see a trend in TS repair with time from the 5' to 3' end. These findings help to understand the circadian- and transcription-dependent and -independent control of repair in response to cisplatin, and should aid in designing cisplatin chemotherapy regimens with improved therapeutic indexes.


Asunto(s)
Relojes Circadianos/fisiología , Cisplatino/metabolismo , Aductos de ADN/metabolismo , Reparación del ADN , Hígado/metabolismo , Animales , Cisplatino/análisis , Cisplatino/farmacología , Aductos de ADN/análisis , Daño del ADN/efectos de los fármacos , Femenino , Cinética , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ADN/métodos , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 115(21): E4777-E4785, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735688

RESUMEN

Cisplatin is a major cancer chemotherapeutic drug. It kills cancer cells by damaging their DNA, mainly in the form of Pt-d(GpG) diadducts. However, it also has serious side effects, including nephrotoxicity and hepatotoxicity that limit its usefulness. Chronotherapy is taking circadian time into account during therapy to improve the therapeutic index, by improving efficacy and/or limiting toxicity. To this end, we tested the impact of clock time on excision repair of cisplatin-induced DNA damage at single-nucleotide resolution across the genome in mouse kidney and liver. We found that genome repair is controlled by two circadian programs. Repair of the transcribed strand (TS) of active, circadian-controlled genes is dictated by each gene's phase of transcription, which falls across the circadian cycle with prominent peaks at dawn and dusk. In contrast, repair of the nontranscribed strand (NTS) of all genes, repair of intergenic DNA, and global repair overall peaks at Zeitgeber time ZT08, as basal repair capacity, which is controlled by the circadian clock, peaks at this circadian time. Consequently, the TS and NTS of many genes are repaired out of phase. As most cancers are thought to have defective circadian rhythms, these results suggest that future research on timed dosage of cisplatin could potentially reduce damage to healthy tissue and improve its therapeutic index.


Asunto(s)
Antineoplásicos/farmacología , Ritmo Circadiano/genética , Cisplatino/farmacología , Aductos de ADN/farmacología , Daño del ADN , Reparación del ADN , Genoma Humano , Neoplasias/genética , Animales , Ritmo Circadiano/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Transcripción Genética/efectos de los fármacos
4.
Biochemistry ; 54(2): 110-23, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25302769

RESUMEN

The circadian clock is a global regulatory system that interfaces with most other regulatory systems and pathways in mammalian organisms. Investigations of the circadian clock-DNA damage response connections have revealed that nucleotide excision repair, DNA damage checkpoints, and apoptosis are appreciably influenced by the clock. Although several epidemiological studies in humans and a limited number of genetic studies in mouse model systems have indicated that clock disruption may predispose mammals to cancer, well-controlled genetic studies in mice have not supported the commonly held view that circadian clock disruption is a cancer risk factor. In fact, in the appropriate genetic background, clock disruption may instead aid in cancer regression by promoting intrinsic and extrinsic apoptosis. Finally, the clock may affect the efficacy of cancer treatment (chronochemotherapy) by modulating the pharmacokinetics and pharmacodynamics of chemotherapeutic drugs as well as the activity of the DNA repair enzymes that repair the DNA damage caused by anticancer drugs.


Asunto(s)
Antineoplásicos/administración & dosificación , Relojes Circadianos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/metabolismo , Cronoterapia de Medicamentos , Humanos , Neoplasias/epidemiología , Neoplasias/metabolismo , Factores de Riesgo
5.
FEBS Lett ; 584(12): 2618-25, 2010 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-20227409

RESUMEN

Mammalian cells possess a cell-autonomous molecular clock which controls the timing of many biochemical reactions and hence the cellular response to environmental stimuli including genotoxic stress. The clock consists of an autoregulatory transcription-translation feedback loop made up of four genes/proteins, BMal1, Clock, Cryptochrome, and Period. The circadian clock has an intrinsic period of about 24 h, and it dictates the rates of many biochemical reactions as a function of the time of the day. Recently, it has become apparent that the circadian clock plays an important role in determining the strengths of cellular responses to DNA damage including repair, checkpoints, and apoptosis. These new insights are expected to guide development of novel mechanism-based chemotherapeutic regimens.


Asunto(s)
Ritmo Circadiano/fisiología , Daño del ADN , Modelos Biológicos , Animales , Apoptosis/genética , Apoptosis/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Ritmo Circadiano/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Cronoterapia de Medicamentos , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/etiología
6.
Cell Cycle ; 8(11): 1665-7, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19411851

RESUMEN

The mammalian circadian system synchronizes organisms' daily cyclical physiology from gene expression to gross behavioral patterns. A new study from our group suggests that DNA repair is also intimately linked to circadian rhythm. Since the repair of DNA lesions contributes to the resistance of chemotherapy with DNA damaging agents such as cisplatin, understanding the fundamental molecular mechanism regulating DNA repair pathways is important for cancer therapy. Here we review the significance of the connection linking the circadian clock with nucleotide excision repair and discuss potential implications for chemotherapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Ritmo Circadiano/genética , Reparación del ADN , Factores de Transcripción ARNTL , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ritmo Circadiano/fisiología , Criptocromos , Proteínas de Unión al ADN/metabolismo , Cronoterapia de Medicamentos , Flavoproteínas/genética , Flavoproteínas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Circadianas Period , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
7.
J Biol Rhythms ; 19(6): 504-17, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15523112

RESUMEN

Mice exhibit multiple nonvisual responses to light, including 1) photoentrainment of circadian rhythm; 2) "masking," which refers to the acute effect of light on behavior, either negative (activity suppressing) or positive (activity inducing); and 3) pupillary constriction. In mammals, the eye is the sole photosensory organ for these responses, and it contains only 2 known classes of pigments: opsins and cryptochromes. No individual opsin or cryptochrome gene is essential for circadian photoreception, gene photoinduction, or masking. Previously, the authors found that mice lacking retinol-binding protein, in which dietary depletion of ocular retinaldehyde can be achieved, had normal light signaling to the SCN, as determined by per gene photoinduction. In the present study, the authors analyzed phototransduction to the SCN in vitamin A-replete and vitamin A-depleted rbp-/- and rbp-/-cry1-/-cry2-/- mice using molecular and behavioral end points. They found that vitamin A-depleted rbp-/- mice exhibit either normal photoentrainment or become diurnal. In contrast, while vitamin A-replete rbp-/-cry1-/-cry2-/- mice are light responsive (with reduced sensitivity), vitamin A-depleted rbp-/-cry1-/-cry2-/- mice, which presumably lack functional opsins and cryptochromes, lose most behavioral and molecular responses to light. These data demonstrate that both cryptochromes and opsins regulate nonvisual photoresponses.


Asunto(s)
Flavoproteínas/metabolismo , Fototransducción/fisiología , Vitamina A/metabolismo , Animales , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Criptocromos , Dieta , Suplementos Dietéticos , Flavoproteínas/genética , Regulación de la Expresión Génica , Genes fos , Luz , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Pupila , Retinaldehído/genética , Retinaldehído/metabolismo , Opsinas de Bastones/metabolismo , Núcleo Supraquiasmático/metabolismo , Vitamina A/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA