Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glob Health Action ; 16(1): 2161231, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36621943

RESUMEN

Due to the workload and lack of a critical mass of trained operational researchers within their ranks, health systems and programmes may not be able to dedicate sufficient time to conducting operational research (OR). Hence, they may need the technical support of operational researchers from research/academic organisations. Additionally, there is a knowledge gap regarding implementing differentiated tuberculosis (TB) care in programme settings. In this 'how we did it' paper, we share our experience of implementing a differentiated TB care model along with an inbuilt OR component in Tamil Nadu, a southern state in India. This was a health system initiative through a collaboration of the State TB cell with the Indian Council of Medical Research institutes and the World Health Organisation country office in India. The learnings are in the form of eleven tips: four broad principles (OR on priority areas and make it a health system initiative, implement simple and holistic ideas, embed OR within routine programme settings, aim for long-term engagement), four related to strategic planning (big team of investigators, joint leadership, decentralised decision-making, working in advance) and three about implementation planning (conducting pilots, smart use of e-tools and operational research publications at frequent intervals). These may act as a guide for other Indian states, high TB burden countries that want to implement differentiated care, and for operational researchers in providing technical assistance for strengthening implementation and conducting OR in health systems and programmes (TB or other health programmes). Following these tips may increase the chances of i) an enriching engagement, ii) policy/practice change, and iii) sustainable implementation.


Asunto(s)
Investigación Biomédica , Tuberculosis , Humanos , India , Tuberculosis/prevención & control , Programas de Gobierno , Organizaciones
2.
Artículo en Inglés | MEDLINE | ID: mdl-29156154

RESUMEN

Coconut oil (CO), the primary choice of cooking purposes in the south Asian countries, is rich in medium chain saturated fatty acids, especially lauric acid (50-52%). The oil has high medicinal use in Ayurvedic system and known to contain polyphenolic antioxidants. Studies have reported that CO improves insulin sensitivity and shows hypoglycemic effect. However, there is no information regarding its effect on chronic diabetic complications including retinopathy and nephropathy is available. The secondary diabetic complications are mediated by the activation of polyol pathway, where aldose reductase (AR) plays crucial role. In this study, in silico analysis has been used to screen the effect of CO as well as its constituents, MCFAs and phenolic compounds, for targeting the molecules in polyol pathway. The study revealed that lauric acid (LA) interacts with AR and DPP-IV of polyol pathway and inhibits the activity of these enzymes. Validation studies using animal models confirmed the inhibition of AR and SDH in wistar rats. Further, the LA dose dependently reduced the expression of AR in HCT-15 cells. Together, the study suggests the possible role of CO, particularly LA in reducing secondary diabetic complications.


Asunto(s)
Aceite de Coco/uso terapéutico , Nefropatías Diabéticas/dietoterapia , Retinopatía Diabética/dietoterapia , Ácidos Grasos/uso terapéutico , Aldehído Reductasa/química , Aldehído Reductasa/metabolismo , Animales , Antioxidantes/uso terapéutico , Aceite de Coco/química , Nefropatías Diabéticas/patología , Retinopatía Diabética/patología , Humanos , Ácidos Láuricos/química , Ácidos Láuricos/uso terapéutico , Medicina Ayurvédica , Polímeros/química , Polifenoles/química , Polifenoles/uso terapéutico , Ratas
3.
AAPS J ; 7(1): E201-17, 2005 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-16146341

RESUMEN

N-n-octylnicotinium iodide (NONI) and N-n-decylnicotinium iodide (NDNI) are selective nicotinic receptor (nAChR) antagonists mediating nicotine-evoked striatal dopamine (DA) release, and inhibiting [3H]nicotine binding, respectively. This study evaluated effects of introducing unsaturation into the N-n-alkyl chains of NONI and NDNI on inhibition of [3H]nicotine and [3H]methyllycaconitine binding (alpha4beta2* and alpha7* nAChRs, respectively), (86)Rb+ efflux and [3H]DA release (agonist or antagonist effects at alpha4beta2* and alpha6beta2*-containing nAChRs, respectively). In the NONI series, introduction of a C3-cis- (NONB3c), C3-trans- (NONB3t), C7-double-bond (NONB7e), or C3-triple-bond (NONB3y) afforded a 4-fold to 250-fold increased affinity for [3H]nicotine binding sites compared with NONI. NONB7e and NONB3y inhibited nicotine-evoked 86Rb+ efflux, indicating alpha4beta2* antagonism. NONI analogs exhibited a 3-fold to 8-fold greater potency inhibiting nicotine-evoked [3H]DA overflow compared with NONI (IC50 = 0.62 microM; Imax = 89%), with no change in Imax, except for NONB3y (Imax = 50%). In the NDNI series, introduction of a C4-cis- (NDNB4c), C4-trans-double-bond (NDNB4t), or C3-triple-bond (NDNB3y) afforded a 4-fold to 80-fold decreased affinity for [3H]nicotine binding sites compared with NDNI, whereas introduction of a C9 double-bond (NDNB9e) did not alter affinity. NDNB3y and NDNB4t inhibited nicotine-evoked 86Rb+ efflux, indicating antagonism at alpha4beta2* nAChRs. Although NDNI had no effect, NDNB4t and NDNB9e potently inhibited nicotine-evoked [3H]DA overflow (IC50 = 0.02-0.14 microM, Imax = 90%), as did NDNB4c (IC50 = 0.08 microM; Imax = 50%), whereas NDNB3y showed no inhibition. None of the analogs had significant affinity for alpha7* nAChRs. Thus, unsaturated NONI analogs had enhanced affinity at alpha4beta2*- and alpha6beta2*-containing nAChRs, however a general reduction of affinity at alpha4beta2* and an uncovering of antagonist effects at alpha6beta2*-containing nAChRs were observed with unsaturated NDNI analogs.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Nicotina/análogos & derivados , Antagonistas Nicotínicos/química , Receptores Nicotínicos/efectos de los fármacos , Aconitina/análogos & derivados , Aconitina/metabolismo , Animales , Cuerpo Estriado/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Estimulación Eléctrica , Humanos , Masculino , Estructura Molecular , Nicotina/química , Nicotina/metabolismo , Nicotina/farmacología , Antagonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/farmacología , Nomifensina/farmacología , Unión Proteica , Subunidades de Proteína , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Recompensa , Rubidio/análisis , Relación Estructura-Actividad , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
4.
Appl Microbiol Biotechnol ; 65(5): 530-7, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15221221

RESUMEN

Fructosyl transferase (FTase) production by Aspergillus oryzae CFR 202 was carried out by solid-state fermentation (SSF), using various agricultural by-products like cereal bran, corn products, sugarcane bagasse,cassava bagasse (tippi) and by-products of coffee and tea processing. The FTase produced was used for the production of fructo-oligosaccharides (FOS), using 60% sucrose as substrate. Among the cereal bran used, rice bran and wheat bran were good substrates for FTase production by A. oryzae CFR 202. Among the various corn products used, corn germ supported maximum FTase production, whereas among the by-products of coffee and tea processing used, spent coffee and spent tea were good substrates, with supplementation of yeast extract and complete synthetic media. FTase had maximum activity at 60 degrees C and pH 6.0. FTase was stable up to 40 degrees C and in the pH range 5.0-7.0. Maximum FOS production was obtained with FTase after 8 h of reaction with 60% sucrose. FTase produced by SSF using wheat bran was purified 107-fold by ammonium sulphate precipitation (30-80%), DEAE cellulose chromatography and Sephadex G-200 chromatography. The molecular mass of the purified FTase was 116.3 kDa by SDS-PAGE. This study indicates the potential for the use of agricultural by-products for the efficient production of FTase enzyme by A. oryzae CFR 202 in SSF, thereby resulting in value addition of those by-products.


Asunto(s)
Aspergillus oryzae/metabolismo , Hexosiltransferasas/biosíntesis , Hexosiltransferasas/aislamiento & purificación , Sulfato de Amonio/química , Celulosa/metabolismo , Fraccionamiento Químico , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Café/metabolismo , Medios de Cultivo/química , Fibras de la Dieta/metabolismo , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Fermentación , Hexosiltransferasas/metabolismo , Concentración de Iones de Hidrógeno , Peso Molecular , Oligosacáridos/metabolismo , Peptonas/metabolismo , Sacarosa/metabolismo , Té/metabolismo , Temperatura , Factores de Tiempo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA