Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Nutr Biochem ; 124: 109497, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37875228

RESUMEN

Multiple sclerosis (MS) is a chronic demyelinating disease, whose etiology is not yet fully understood, although there are several factors that can increase the chances of suffering from it. These factors include nutrition, which may be involved in the pathogenesis of the disease. In relation to nutrition, docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (n-3 PUFA), has emerged as an important player in the regulation of neuroinflammation, being considered a pleiotropic molecule. This study aimed to evaluate the effect of DHA supplementation on clinical state and oxidative stress produced by experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Twenty-five Dark Agouti rats which were used divided into Control Group, Control+Vehicle Group, Control+DHA Group, EAE Group, and EAE+DHA Group. DHA was administered for 51 days by intraperitoneal (i.p.) injection at a dose of 40 mg/kg, once a day, 5 days a week. DHA supplementation produced a decrease in oxidative stress, as well as an improvement in the clinical score of the disease. DHA could exert a beneficial effect on the clinic of MS, through the activation of the antioxidant factor Nrf2.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ácidos Grasos Omega-3 , Esclerosis Múltiple , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Modelos Teóricos
2.
Inflammopharmacology ; 30(5): 1569-1596, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35665873

RESUMEN

BACKGROUND: Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS is a chronic immune-mediated disease of the Central Nervous System. AIM: The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the pathophysiology of the disease. RESULTS: Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3ß, which could be useful in controlling the microbiota. CONCLUSION: Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the treatment of this disease. However, more research in human is needed to help understand the possible interaction between melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.


Asunto(s)
COVID-19 , Melatonina , Esclerosis Múltiple , Adyuvantes Inmunológicos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Catalasa/metabolismo , Estrógenos/farmacología , Estrógenos/uso terapéutico , Femenino , Glutatión , Glutatión Peroxidasa/metabolismo , Humanos , Inflamasomas , Masculino , Melatonina/farmacología , Melatonina/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , SARS-CoV-2 , Superóxido Dismutasa/metabolismo
3.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884881

RESUMEN

The objective of the present study was to review the existing data on the association between Zn status and characteristics of gut microbiota in various organisms and the potential role of Zn-induced microbiota in modulating systemic effects. The existing data demonstrate a tight relationship between Zn metabolism and gut microbiota as demonstrated in Zn deficiency, supplementation, and toxicity studies. Generally, Zn was found to be a significant factor for gut bacteria biodiversity. The effects of physiological and nutritional Zn doses also result in improved gut wall integrity, thus contributing to reduced translocation of bacteria and gut microbiome metabolites into the systemic circulation. In contrast, Zn overexposure induced substantial alterations in gut microbiota. In parallel with intestinal effects, systemic effects of Zn-induced gut microbiota modulation may include systemic inflammation and acute pancreatitis, autism spectrum disorder and attention deficit hyperactivity disorder, as well as fetal alcohol syndrome and obesity. In view of both Zn and gut microbiota, as well as their interaction in the regulation of the physiological functions of the host organism, addressing these targets through the use of Zn-enriched probiotics may be considered an effective strategy for health management.


Asunto(s)
Microbioma Gastrointestinal , Intestinos/metabolismo , Probióticos , Zinc/metabolismo , Animales , Humanos , Intestinos/microbiología
4.
Neurotox Res ; 38(4): 941-956, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32930995

RESUMEN

The endocannabinoid system has been associated with antiproliferative effects in several types of tumors through cannabinoid receptor-mediated cell death mechanisms. Oleamide (ODA) is a CB1/CB2 agonist associated with cell growth and migration by adhesion and/or ionic signals associated with Gap junctions. Antiproliferative mechanisms related to ODA remain unknown. In this work, we evaluated the effects of ODA on cell viability and morphological changes in a rat RG2 glioblastoma cell line and compared these effects with primary astrocyte cultures from 8-day postnatal rats. RG2 and primary astrocyte cultures were treated with ODA at increasing concentrations (25, 50, 100, and 200 µM) for different periods of time (12, 24, and 48 h). Changes in RG2 cell viability and morphology induced by ODA were assessed by viability/mitochondrial activity test and phase contrast microscopy, respectively. The ratios of necrotic and apoptotic cell death, and cell cycle alterations, were evaluated by flow cytometry. The roles of CB1 and CB2 receptors on ODA-induced changes were explored with specific receptor antagonists. ODA (100 µM) induced somatic damage, detachment of somatic bodies, cytoplasmic polarization, and somatic shrinkage in RG2 cells at 24 and 48 h. In contrast, primary astrocytes treated at the same ODA concentrations exhibited cell aggregation but not cell damage. ODA (100 µM) increased apoptotic cell death and cell arrest in the G1 phase at 24 h in the RG2 line. The effects induced by ODA on cell viability of RG2 cells were independent of CB1 and CB2 receptors or changes in intracellular calcium transient. Results of this novel study suggest that ODA exerts specific antiproliferative effects on RG2 glioblastoma cells through unconventional apoptotic mechanisms not involving canonical signals.


Asunto(s)
Muerte Celular/efectos de los fármacos , Glioblastoma/metabolismo , Ácidos Oléicos/toxicidad , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Muerte Celular/fisiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Hipnóticos y Sedantes/toxicidad , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Endogámicas F344 , Ratas Wistar , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores
5.
Expert Rev Neurother ; 20(11): 1109-1121, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32799578

RESUMEN

INTRODUCTION: Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion disease represent important public health concerns. Exposure to high levels of  heavy metals such as manganese (Mn) may contribute to their development. AREAS COVERED: In this critical review, we address the role of Mn in the etiology of neurodegenerative diseases and discuss emerging treatments of Mn overload, such as chelation therapy. In addition, we discuss natural and synthetic compounds under development as prospective therapeutics. Moreover, bioinformatic approaches to identify new potential targets and therapeutic substances to reverse the neurodegenerative diseases are discussed. EXPERT OPINION: Here, the authors highlight the importance of better understanding the molecular mechanisms of toxicity associated with neurodegenerative diseases, and the role of Mn in these diseases. Additional emphasis should be directed to the discovery of new agents to treat Mn-induced diseases, since present day chelator therapies have limited bioavailability. Furthermore, the authors encourage the scientific community to develop research using libraries of compounds to screen those compounds that show efficacy in regulating brain Mn levels. In addition, bioinformatics may provide novel insight for pathways and clinical treatments associated with Mn-induced neurodegeneration, leading to a new direction in Mn toxicological research.


Asunto(s)
Manganeso/toxicidad , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/tratamiento farmacológico , Humanos
6.
Nutrients ; 11(10)2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615022

RESUMEN

This study reveals the existence of oxidative stress (reactive oxygen species (ROS)) in non-nervous organs and tissues in multiple sclerosis (MS) by means of a model of experimental autoimmune encephalomyelitis (EAE) in rats. This model reproduces a similar situation to MS, as well as its relationship with intestinal microbiota starting from the changes in bacterial lipopolysaccharide levels (LPS) in the outer wall of the gram-negative bacteria. Finally, the administration of extra-virgin olive oil (EVOO), hydroxytirosol (HT), and oleic acid (OA) exert beneficial effects. Twenty-five Dark Agouti two-month-old male rats, weighing around 190 g, were distributed into the following groups: Control, EAE (experimental autoimmune encephalomyelitis group), EAE + EVOO, EAE + HT, and EAE + OA. The glutathione redox system with the EAE was measured in heart, kidney, liver, and small and large intestines. The LPS and the correlation with oxidative stress in the small and large intestines were also investigated. The results showed that (1) the oxidative damage in the EAE model affects non-nervous organs and tissues; (2) The LPS is related to inflammatory phenomena and oxidative stress in the intestinal tissue and in other organs; (3) The administration of EVOO, HT, and OA reduces the LPS levels at the same time as minimizing the oxidative damage; (4) EVOO, HT, and OA improve the disease's clinical score; and (5) on balance, EVOO offers a better neuroprotective effect.


Asunto(s)
Encefalomielitis Autoinmune Experimental/dietoterapia , Aceite de Oliva , Animales , Suplementos Dietéticos , Glutatión/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas
7.
Expert Rev Neurother ; 19(3): 243-260, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30759034

RESUMEN

INTRODUCTION: Iron (Fe) and manganese (Mn) are essential nutrients for humans. They act as cofactors for a variety of enzymes. In the central nervous system (CNS), these two metals are involved in diverse neurological activities. Dyshomeostasis may interfere with the critical enzymatic activities, hence altering the neurophysiological status and resulting in neurological diseases. Areas covered: In this review, the authors cover the molecular mechanisms of Fe/Mn-induced toxicity and neurological diseases, as well as the diagnosis and potential treatment. Given that both Fe and Mn are abundant in the earth crust, nutritional deficiency is rare. In this review the authors focus on the neurological disorders associated with Mn and Fe overload. Expert commentary: Oxidative stress and mitochondrial dysfunction are the primary molecular mechanism that mediates Fe/Mn-induced neurotoxicity. Although increased Fe or Mn concentrations have been found in brain of patients, it remains controversial whether the elevated metal amounts are the primary cause or secondary consequence of neurological diseases. Currently, treatments are far from satisfactory, although chelation therapy can significantly decrease brain Fe and Mn levels. Studies to determine the primary cause and establish the molecular mechanism of toxicity may help to adapt more comprehensive and satisfactory treatments in the future.


Asunto(s)
Enfermedades del Sistema Nervioso Central/inducido químicamente , Hierro/envenenamiento , Intoxicación por Manganeso/diagnóstico , Intoxicación por Manganeso/tratamiento farmacológico , Animales , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso Central/diagnóstico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/metabolismo , Humanos , Hierro/metabolismo , Intoxicación por Manganeso/metabolismo , Estrés Oxidativo
8.
Neurotox Res ; 35(2): 373-386, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30267269

RESUMEN

Positive influence of yerba mate (Ilex paraguariensis) on human health issues has been attributed to its frequent consumption in South American countries and is assumed to be due to its high content of antioxidant compounds, including chlorogenic acid (CGA); however, hard evidence about its positive effects under chronic stress conditions is still required. In this study, the effects of yerba mate extracts (IpE), and its main compound chlorogenic acid (CGA), on behavioral and morphological endpoints of brain damage induced by chronic restraint stress (CRS) to rats were evaluated and compared. CRS sessions were performed during 21 days. IpE (200 mg/mL, p.o.) or CGA (2 mg/mL, p.o.) were administered daily 30 min before stress. Behavioral tests comprised motor skills and anxiety-like activity. Histological (H&E) and histochemical changes were explored in three brain regions: cortex (Cx), hippocampus (Hp), and striatum (S). Rats subjected to CRS exhibited hypoactive patterns of locomotor activity. Rats receiving IpE before CRS preserved the basal locomotor activity. Stressed animals also augmented the anxiety-like activity, whereas IpE normalized exploratory behavior. Stressed animals presented cell damage in all regions. Morphological damage was more effectively prevented by IpE than CGA. Stressed animals also augmented the expression/localization pattern of the tumor necrosis factor alpha in the striatum and the expression of the glial fibrillary acidic protein in the hippocampus (stratum moleculare) and cortex, whereas IpE and CGA reduced the expression of these molecules. In turn, CGA exhibited only moderate protective effects on all markers analyzed. Our findings support a protective role of IpE against CRS, which may be related to the antioxidant and anti-inflammatory properties of its compounds. Since CGA was unable to prevent all the alterations induced by CRS, it is concluded that the protective properties of the whole extract of Ilex paraguariensis are the result of the combined effects of all its natural antioxidant compounds, and not only of the properties of CGA.


Asunto(s)
Encéfalo/metabolismo , Ácido Clorogénico/uso terapéutico , Ilex paraguariensis , Extractos Vegetales/uso terapéutico , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Animales , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Ácido Clorogénico/farmacología , Masculino , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ratas , Ratas Wistar , Restricción Física , Estrés Psicológico/patología
9.
Neurotox Res ; 34(3): 640-648, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29949107

RESUMEN

Molecules exhibiting antioxidant, neuroprotective, and regulatory properties inherent to natural products consumed by humans are gaining attention in biomedical research. Ferulic acid (FA) is a phenolic compound possessing antioxidant and cytoprotective properties. It is found in several vegetables, including sugarcane, where it serves as the main antioxidant component. Here, we compared the antioxidant and cytoprotective effects of FA with those of the total sugarcane aqueous extract (SCAE). Specifically, we assessed biochemical markers of cell dysfunction in rat cortical brain slices and markers of physiological stress in Caenorhabditis elegans upon exposure to toxins evoking different mechanisms of neurotoxicity, including direct oxidative stress and/or excitotoxicity. In rat cortical slices, FA (250 and 500 µM), but not SCAE (~ 270 µM of total polyphenols), prevented the loss of reductive capacity induced by the excitotoxin quinolinic acid (QUIN, 100 µM), the pro-oxidant agent ferrous sulfate (FeSO4, 25 µM), and the dopaminergic pro-oxidant 6-hydroxydopamine (6-OHDA, 100 µM). In wild-type (N2) C. elegans, FA (38 mM) exerted protective effects on decreased survival induced by FeSO4 (15 mM) and 6-OHDA (25 mM), and the motor alterations induced by QUIN (100 mM), FeSO4, and 6-OHDA. In contrast, SCAE (~ 13.5 mM of total polyphenols) evoked protective effects on the decreased survival induced by the three toxic agents, the motor alterations induced by FeSO4, and the reproductive deficit induced by FeSO4. In addition, FA was unable to reverse the decreased survival induced by all these toxins in the skn-1-/- strain (VC1772), which lacks the homolog of mammalian Nrf2, a master antioxidant gene. Altogether, our results suggest that (1) both FA and SCAE afford protection against toxic conditions, (2) not all the effects inherent to SCAE are due to FA, and (3) FA requires the skn-1 pathway to exert its protective effects in C. elegans.


Asunto(s)
Ácidos Cumáricos/uso terapéutico , Síndromes de Neurotoxicidad/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Saccharum/química , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Tasa de Natalidad , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Compuestos Ferrosos/toxicidad , Técnicas In Vitro , Hierro/metabolismo , Locomoción/efectos de los fármacos , Masculino , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/fisiopatología , Oxidopamina/toxicidad , Extractos Vegetales/química , Ácido Quinolínico/toxicidad , Ratas , Ratas Wistar
10.
Neurotox Res ; 33(2): 259-267, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28822104

RESUMEN

The tryptophan metabolite, quinolinic acid (QUIN), and the mitochondrial toxin 3-nitropropionic acid (3-NP) are two important tools for toxicological research commonly used in neurotoxic models of excitotoxicity, oxidative stress, energy depletion, and neuronal cell death in mammals. However, their toxic properties have yet to be explored in the nematode Caenorhabditis elegans (C. elegans) for the establishment of novel, simpler, complementary, alternative, and predictive neurotoxic model of mammalian neurotoxicity. In this work, the effects of QUIN (1-100 mM) and 3-NP (1-10 mM) were evaluated on various physiological parameters (survival, locomotion, and longevity) in a wild-type (WT) strand of C. elegans (N2). Their effects were also tested in the VC1772 strain (knock out for the antioxidant SKN-1 pathway) and the VP596 strain (worms with a reporter gene for glutathione S-transferase (GST) transcription) in order to establish the role of the SKN-1 pathway in the mode of action of QUIN and 3-NP. In N2, the higher doses of both toxins decreased survival, though only QUIN altered motor activity. Both toxins also reduced longevity in the VC1772 strain (as compared to N2 strain) and augmented GST transcription in the VP596 strain at the highest doses. The changes induced by both toxins require high doses, and therefore appear moderate when compared with other toxic agents. Nevertheless, the alterations produced by QUIN and 3-NP in C. elegans are relevant to mammalian neurotoxicity as they provide novel mechanistic approaches to the assessment of neurotoxic events comprising oxidative stress and excitotoxicity, in the nematode model.


Asunto(s)
Antihipertensivos/toxicidad , Proteínas de Caenorhabditis elegans/efectos de los fármacos , Proteínas de Unión al ADN/efectos de los fármacos , Nitrocompuestos/toxicidad , Propionatos/toxicidad , Ácido Quinolínico/toxicidad , Factores de Transcripción/efectos de los fármacos , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Mitocondrias/efectos de los fármacos , Síndromes de Neurotoxicidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción/metabolismo
11.
Appl Physiol Nutr Metab ; 42(11): 1172-1178, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28708964

RESUMEN

Immobilization induces oxidative damage to the brain. Ilex paraguariensis extracts (Mate) and their major natural compound, chlorogenic acid (CGA), exert protective effects against reactive oxygen species formation. Here, the effects of Mate and CGA on oxidative damage induced by chronic immobilization stress (CIS) in the cortex, hippocampus, and striatum were investigated. For CIS, animals were immobilized for 6 h every day for 21 consecutive days. Rats received Mate or CGA by intragastric gavage 30 min before every restraint session. Endpoints of oxidative stress (levels of lipid peroxidation, protein carbonylation, and reduced (GSH) and oxidized (GSSG) forms of glutathione) were evaluated following CIS. While CIS increased oxidized lipid and carbonyl levels in all brain regions, CGA (and Mate to a lesser extent) attenuated lipid and protein oxidation as compared with control groups. GSH/GSSG balance showed a tendency to increase in all regions in response to stress and antioxidants. Taken together, our results support a protective role of dietary antioxidants against the neuronal consequences of stress.


Asunto(s)
Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Ilex paraguariensis/química , Extractos Vegetales/farmacología , Estrés Fisiológico/efectos de los fármacos , Animales , Encéfalo/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Ratas , Ratas Wistar , Restricción Física
12.
Neurochem Int ; 89: 83-91, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26122973

RESUMEN

Therapeutic approaches based on isolated compounds obtained from natural products to handle central and peripheral disorders involving oxidative stress and inflammation are more common nowadays. The validation of nutraceutics vs. pharmaceutics as tools to induce preventive and protective profiles in human health alterations is still far of complete acceptance, but the basis to start more solid experimental and clinical protocols with natural products has already begun. S-allyl cysteine (SAC) is a promising garlic-derived organosulfur compound exhibiting a considerable number of positive actions in cell models and living systems. An update, in the form of review, is needed from time to time to get access to the state-of-the-art on this topic. In this review we visited recent and refreshing evidence of new already proven and potential targets to explain the benefits of using SAC against toxic and pathological conditions. The broad spectrum of protective actions covered by this molecule comprises antioxidant, redox modulatory and anti-inflammatory activities, accompanied by anti-apoptotic, pro-energetic and signaling capacities. Herein, we detail the evidence on these aspects to provide the reader a more complete overview on the promising aspects of SAC in research.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cisteína/análogos & derivados , Ajo , Fármacos Neuroprotectores/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Cisteína/química , Cisteína/metabolismo , Cisteína/farmacología , Humanos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Oxidación-Reducción/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo
13.
Free Radic Res ; 48(2): 159-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24147739

RESUMEN

The neuroprotective properties of S-allyl cysteine (SAC) have been demonstrated in different neurotoxic paradigms, and it may be partially attributable to its antioxidant and anti-inflammatory profile. Recently, SAC has also been shown to induce neuroprotection in the rat striatum in a toxic model induced by 6-hydroxydopamine in rats through a concerted antioxidant response involving Nrf2 transcription factor nuclear transactivation and Phase 2 enzymes' upregulation. In this work, we investigated whether the SAC-induced in vivo striatal and nigral neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridinium (MPTP) toxicity recruits Nrf2 transactivation in C57BL/6J mice. SAC (120 mg/kg, i.p. × 5 days) partially ameliorated the MPTP (30 mg/kg, i.p. × 5 days)-induced striatal and nigral dopamine and tyrosine hydroxylase depletion, attenuated the loss of Mn-SOD and HO-1 activities, and preserved the protein content of these enzymes. While no significant changes were detected for the striatal Nrf2 nuclear protein levels, the nigral Nrf2 nuclear content was decreased by MPTP and stimulated by SAC. Our findings suggest that SAC can exert neuroprotection since the origin of the dopaminergic lesion-at the substantia nigra (SN)-not only by means of direct antioxidant actions, but also through Nrf2 nuclear transactivation and Phase 2 enzymes upregulation.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Cisteína/análogos & derivados , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Sustancia Negra/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Núcleo Celular/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Cisteína/farmacología , Cisteína/uso terapéutico , Dopamina/metabolismo , Evaluación Preclínica de Medicamentos , Hemo-Oxigenasa 1/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Enfermedad de Parkinson Secundaria/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/patología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Tirosina 3-Monooxigenasa/metabolismo
14.
Oxid Med Cell Longev ; 2012: 907162, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685624

RESUMEN

Aged garlic extract (AGE) is an odorless garlic preparation containing S-allylcysteine (SAC) as its most abundant compound. A large number of studies have demonstrated the antioxidant activity of AGE and SAC in both in vivo--in diverse experimental animal models associated to oxidative stress--and in vitro conditions--using several methods to scavenge reactive oxygen species or to induce oxidative damage. Derived from these experiments, the protective effects of AGE and SAC have been associated with the prevention or amelioration of oxidative stress. In this work, we reviewed different antioxidant mechanisms (scavenging of free radicals and prooxidant species, induction of antioxidant enzymes, activation of Nrf2 factor, inhibition of prooxidant enzymes, and chelating effects) involved in the protective actions of AGE and SAC, thereby emphasizing their potential use as therapeutic agents. In addition, we highlight the ability of SAC to activate Nrf2 factor--a master regulator of the cellular redox state. Here, we include original data showing the ability of SAC to activate Nrf2 factor in cerebral cortex. Therefore, we conclude that the therapeutic properties of these molecules comprise cellular and molecular mechanisms at different levels.


Asunto(s)
Antioxidantes/farmacología , Cisteína/análogos & derivados , Ajo/química , Extractos Vegetales/farmacología , Animales , Cisteína/química , Cisteína/farmacocinética , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/metabolismo , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
15.
Phytomedicine ; 18(1): 65-73, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20576415

RESUMEN

We have recently demonstrated that S-allylcysteine (SAC) induces protection on neurochemical, biochemical and behavioral markers of striatal damage in different neurotoxic animal models - including a murine model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridinium (MPTP) injection to mice - indicating that pro-oxidant reactions underlie neurotoxicity in these models (García et al. 2008). In this work we investigated whether SAC can protect the striatum of mice from the morphological alterations in the MPTP toxic model, and if this response is correlated with a reduction in pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expressions, and further reduction in astrocyte activation (glial fibrillary acidic protein (GFAP) expression). The striatal tissue from MPTP injected animals (30 mg/kg, i.p., ×5 days) showed a significant degree of cell damage and enhanced immunoreactivities to GFAP, TNF-α and iNOS, as well as an enhanced number of apoptotic nuclei. Treatment of mice with SAC (120 mg/kg, i.p., ×5 days) in parallel to MPTP significantly reduced or prevented all these markers. Our results suggest that MPTP-induced morphological alterations recruit a pro-inflammatory component triggered by cytokine TNF-α release and nitric oxide formation, which is sensitive to the antioxidant properties of SAC. This antioxidant is an effective experimental tool to reduce the brain lesions associated with oxidative damage and inflammatory responses.


Asunto(s)
Antioxidantes/uso terapéutico , Cuerpo Estriado/efectos de los fármacos , Cisteína/análogos & derivados , Mediadores de Inflamación/metabolismo , Intoxicación por MPTP/prevención & control , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Cisteína/farmacología , Cisteína/uso terapéutico , Modelos Animales de Enfermedad , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Brain Res Bull ; 68(5): 379-83, 2006 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-16377446

RESUMEN

3-Nitropropionic acid is a neurotoxin that irreversibly inhibits succinate dehydrogenase, a relevant enzyme constituting the complex II of the respiratory chain during mitochondrial electron transport. 3-Nitropropionic acid is known to produce oxidative/nitrosative stress and evokes an experimental model of Huntington's disease. In this work we evaluated the effects of the antioxidant compound and major organosulfur garlic derivative, S-allylcysteine, on lipid peroxidation and mitochondrial dysfunction induced by 3-nitropropionic acid in synaptosomal fractions from rat brain. 3-Nitropropionic acid, at concentrations ranging 0.75-2.5 mM, produced enhanced levels of lipid peroxidation, while increasing concentrations of S-allylcysteine (0.1-2 mM) decreased the peroxidative action of 3-nitropropionic acid (1 mM) in synaptosomal fractions in a concentration-dependent manner. S-Allylcysteine (0.75 mM) also prevented the 3-nitropropionic acid (1mM)-induced mitochondrial dysfunction. These findings suggest that the protective actions that S-allylcysteine exert on the in vitro neurotoxicity induced by 3-nitropropionic acid are mediated by its antioxidant properties.


Asunto(s)
Encéfalo/citología , Cisteína/análogos & derivados , Peroxidación de Lípido/efectos de los fármacos , Enfermedades Mitocondriales/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Sinaptosomas/efectos de los fármacos , Animales , Cisteína/uso terapéutico , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Masculino , Enfermedades Mitocondriales/inducido químicamente , Enfermedades Mitocondriales/metabolismo , Nitrocompuestos/farmacología , Propionatos/farmacología , Ratas , Ratas Wistar , Sales de Tetrazolio , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
17.
Synapse ; 58(4): 258-66, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16206188

RESUMEN

Quinolinate (QUIN) neurotoxicity has been attributed to degenerative events in nerve tissue produced by sustained activation of N-methyl-D-aspartate receptor (NMDAr) and oxidative stress. We have recently described the protective effects that selenium (Se), an antioxidant, produces on different markers of QUIN-induced neurotoxicity (Santamaría et al., 2003, J Neurochem 86:479-488.). However, the mechanisms by which Se exerts its protective actions remain unclear. Since some of these events are thought to be related with inhibition of deadly molecular cascades through the activation of antioxidant selenoproteins, in this study we investigated the effects of Se on QUIN-induced cell damage elicited by the nuclear factor kappaB (NF-kappaB) pathway, as well as the time-course response of striatal glutathione peroxidase (GPx) activity. Se (sodium selenite, 0.625 mg/kg/day, i.p.) was administered to rats for 5 days, and 120 min after the last administration, animals received a single striatal injection of QUIN (240 nmol/mul). Twenty-four hours later, their striata were tested for the expression of IkappaB-alpha (the NF-kappaB cytosolic binding protein), the immunohistochemical expression of NF-kappaB (evidenced as nuclear expression of P65), caspase-3-like activation, and DNA fragmentation. Additional groups were killed at 2, 6, and 24 h for measurement of GPx activity. Se reduced the QUIN-induced decrease in IkappaB-alpha expression, evidencing a reduction in its cytosolic degradation. Se also prevented the QUIN-induced increase in P65-immunoreactive cells, suggesting a reduction of NF-kappaB nuclear translocation. Caspase-3-like activation and DNA fragmentation produced by QUIN were also inhibited by Se. Striatal GPx activity was stimulated by Se at 2 and 6 h, but not at 24 h postlesion. Altogether, these data suggest that the protective effects exerted by Se on QUIN-induced neurotoxicity are partially mediated by the inhibition of proapoptotic events underlying IkappaB-alpha degradation, NF-kappaB nuclear translocation, and caspase-3-like activation in the rat striatum, probably involving the early activation of GPx.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácido Quinolínico/toxicidad , Selenio/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Western Blotting , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Glutatión Peroxidasa/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Proteínas I-kappa B/efectos de los fármacos , Proteínas I-kappa B/metabolismo , Inmunohistoquímica , Masculino , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Ratas , Ratas Wistar
18.
Neurochem Int ; 45(8): 1175-83, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15380627

RESUMEN

Excitotoxicity elicited by overactivation of N-methyl-D-aspartate receptors is a well-known characteristic of quinolinic acid-induced neurotoxicity. However, since many experimental evidences suggest that the actions of quinolinic acid also involve reactive oxygen species formation and oxidative stress as major features of its pattern of toxicity, the use of antioxidants as experimental tools against the deleterious effects evoked by this neurotoxin becomes more relevant. In this work, we investigated the effect of a garlic-derived compound and well-characterized free radical scavenger, S-allylcysteine, on quinolinic acid-induced striatal neurotoxicity and oxidative damage. For this purpose, rats were administered S-allylcysteine (150, 300 or 450 mg/kg, i.p.) 30 min before a single striatal infusion of 1 microl of quinolinic acid (240 nmol). The lower dose (150 mg/kg) of S-allylcysteine resulted effective to prevent only the quinolinate-induced lipid peroxidation (P < 0.05), whereas the systemic administration of 300 mg/kg of this compound to rats decreased effectively the quinolinic acid-induced oxidative injury measured as striatal reactive oxygen species formation (P < 0.01) and lipid peroxidation (P < 0.05). S-Allylcysteine (300 mg/kg) also prevented the striatal decrease of copper/zinc-superoxide dismutase activity (P < 0.05) produced by quinolinate. In addition, S-allylcysteine, at the same dose tested, was able to reduce the quinolinic acid-induced neurotoxicity evaluated as circling behavior (P < 0.01) and striatal morphologic alterations. In summary, S-allylcysteine ameliorates the in vivo quinolinate striatal toxicity by a mechanism related to its ability to: (a) scavenge free radicals; (b) decrease oxidative stress; and (c) preserve the striatal activity of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). This antioxidant effect seems to be responsible for the preservation of the morphological and functional integrity of the striatum.


Asunto(s)
Antioxidantes/farmacología , Cisteína/análogos & derivados , Cisteína/farmacología , Ajo/química , Síndromes de Neurotoxicidad/prevención & control , Estrés Oxidativo/efectos de los fármacos , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Western Blotting , Peso Corporal , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Neostriado/efectos de los fármacos , Neostriado/enzimología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/metabolismo
19.
Eur J Pharmacol ; 489(3): 197-202, 2004 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-15087243

RESUMEN

The effects of S-allylcysteine on oxidative damage and spatial learning and memory deficits produced by an intrahippocampal injection of amyloid-beta peptide 25-35 (Abeta(25-35)) in rats were investigated. The formation of reactive oxygen species, lipid peroxidation and the activities of the antioxidant enzymes superoxide dismutase and glutathione peroxidase were all measured in hippocampus 120 min after Abeta(25-35) injection (1 microl of 100 microM solution), while learning and memory skills were evaluated 2 and 35 days after the infusion of Abeta(25-35) to rats, respectively. Abeta(25-35) increased both reactive oxygen species and lipid peroxidation, whereas pretreatment with S-allylcysteine (300 mg/kg, i.p.) 30 min before peptide injection decreased both of these markers. In addition, Abeta(25-35)-induced incorrect learning responses were prevented in most of trials by S-allylcysteine. In contrast, enzyme activities were found unchanged in all groups tested. Findings of this work: (i) support the participation of reactive oxygen species in Abeta(25-35)-induced hippocampal toxicity and learning deficits; and (ii) suggest that the protective effects of S-allylcysteine were related to its ability to scavenge reactive oxygen species.


Asunto(s)
Péptidos beta-Amiloides/efectos adversos , Cisteína/análogos & derivados , Cisteína/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Péptidos beta-Amiloides/administración & dosificación , Animales , Cisteína/administración & dosificación , Cisteína/síntesis química , Esquema de Medicación , Fluoresceínas , Ajo/química , Glutatión Peroxidasa/química , Glutatión Peroxidasa/metabolismo , Hipocampo/fisiopatología , Inyecciones Intraperitoneales , Discapacidades para el Aprendizaje/inducido químicamente , Discapacidades para el Aprendizaje/prevención & control , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo
20.
J Neurochem ; 86(2): 479-88, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12871589

RESUMEN

Quinolinic acid (QUIN), a well known excitotoxin that produces a pharmacological model of Huntington's disease in rats and primates, has been shown to evoke degenerative events in nerve tissue via NMDA receptor (NMDAr) overactivation and oxidative stress. In this study, the antioxidant selenium (as sodium selenite) was tested against different markers of QUIN-induced neurotoxicity under both in vitro and in vivo conditions. In the in vitro experiments, a concentration-dependent effect of selenium was evaluated on the regional peroxidative action of QUIN as an index of oxidative toxicity in rat brain synaptosomes. In the in vivo experiments, selenium (0.625 mg per kg per day, i.p.) was administered to rats for 5 days, and 2 h later animals received a single unilateral striatal injection of QUIN (240 nmol/ micro L). Rats were killed 2 h after the induction of lesions with QUIN to measure lipid peroxidation and glutathione peroxidase (GPx) activity in striatal tissue. In other groups, the rotation behavior, GABA content, morphologic alterations, and the corresponding ratio of neuronal damage were all evaluated as additional markers of QUIN-induced striatal toxicity 7 days after the intrastriatal injection of QUIN. Selenium decreased the peroxidative action of QUIN in synaptosomes both from whole rat brain and from the striatum and hippocampus, but not in the cortex. A protective concentration-dependent effect of selenium was observed in QUIN-exposed synaptosomes from whole brain and hippocampus. Selenium pre-treatment decreased the in vivo lipid peroxidation and increased the GPx activity in QUIN-treated rats. Selenium also significantly attenuated the QUIN-induced circling behavior, the striatal GABA depletion, the ratio of neuronal damage, and partially prevented the morphologic alterations in rats. These data suggest that major features of QUIN-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that selenium partially protects against QUIN toxicity.


Asunto(s)
Antioxidantes/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Síndromes de Neurotoxicidad/tratamiento farmacológico , Ácido Quinolínico , Selenio/uso terapéutico , Animales , Conducta Animal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Química Encefálica , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Selenito de Sodio/uso terapéutico , Sinaptosomas/química , Sinaptosomas/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA