Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 13(18): 8648-8657, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33942038

RESUMEN

Many important human diseases, and especially cancer, have been related to the overproduction of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). This molecule is a product of oxidative stress processes over nucleophilic bases in DNA. In this work, an aptasensor for the rapid, selective and accurate detection of this oncomarker is presented. The aptasensor consists of a nanoporous anodic alumina material loaded with a dye and is functionalized with an aptamer-based "molecular gate". In the presence of target 8-oxo-dG, the capping aptamer displaces from the surface due to the high affinity of the analyte with the capping aptamer, thus inducing delivery of the preloaded fluorescent dye. In contrast, in the absence of 8-oxo-dG, a poor payload delivery is accomplished. This aptamer-based nanodevice has great sensitivity for 8-oxo-dG, resulting in a LOD of 1 nM and a detection time of ca. 60 min. Moreover, the aptasensor is able to accurately detect 8-oxo-dG in unmodified urine and serum without pre-concentration treatments. This diagnostic tool is validated in a set of 38 urine and serum samples from patients diagnosed of colorectal cancer and control patients. These samples are also analyzed using a standardized and specific ELISA kit. The aptasensor displays excellent sensitivity (95.83/100%) and specificity (80/100%) for 8-oxo-dG detection in serum and urine samples, respectively. Our results may serve as a basis for the development of generalized fluorogenic diagnostic platforms for the easy diagnosis of cancer in biofluids as well as for monitoring therapeutic treatments and detection of relapses without the use of expensive equipment or trained personnel.


Asunto(s)
Neoplasias Colorrectales , Nanoporos , 8-Hidroxi-2'-Desoxicoguanosina , Óxido de Aluminio , Neoplasias Colorrectales/diagnóstico , Desoxiguanosina , Humanos
2.
ACS Sens ; 6(3): 1022-1029, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33599490

RESUMEN

Circulating microRNAs have emerged as potential diagnostic biomarkers. The deregulation of the microRNA miR-99a-5p has been previously described as an effective biomarker of early breast cancer. Herein, we present a new nanoporous anodic alumina (NAA)-based biosensor that can detect plasma miR-99a-5p with high sensitivity and selectivity. NAA pores are loaded with rhodamine B and capped with a specific oligonucleotide that is able to block cargo release until the target is present. In the presence of miR-99a-5p, the capping oligonucleotide recognizes the miR-99a-5p sequence and displaces it allowing the release of the encapsulated dye. This method is able to successfully distinguish healthy controls from breast cancer patients, even at early stages with high efficiency, showing the presented system as a promising tool for breast cancer detection.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Nanoporos , Óxido de Aluminio , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Electrodos , Humanos , MicroARNs/genética
3.
Emerg Microbes Infect ; 10(1): 407-415, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33372852

RESUMEN

Candida auris has arisen as an important multidrug-resistant fungus because of several nosocomial outbreaks and elevated rates of mortality. Accurate and rapid diagnosis of C. auris is highly desired; nevertheless, current methods often present severe limitations and produce misidentification. Herein a sensitive, selective, and time-competitive biosensor based on oligonucleotide-gated nanomaterials for effective detection of C. auris is presented. In the proposed design, a nanoporous anodic alumina scaffold is filled with the fluorescent indicator rhodamine B and the pores blocked with different oligonucleotides capable of specifically recognize C. auris genomic DNA. Gate opening modulation and cargo delivery is controlled by successful DNA recognition. C. auris is detected at a concentration as low as 6 CFU/mL allowing obtaining a diagnostic result in clinical samples in one hour with no prior DNA extraction or amplification steps.


Asunto(s)
Técnicas Biosensibles/métodos , Candida/aislamiento & purificación , Candidiasis/diagnóstico , Oligonucleótidos/genética , Óxido de Aluminio , Candida/genética , Diagnóstico Precoz , Humanos , Técnicas de Diagnóstico Molecular , Nanoporos , Oligonucleótidos/química , Rodaminas/química , Sensibilidad y Especificidad , Factores de Tiempo
4.
ACS Sens ; 4(5): 1291-1298, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31020831

RESUMEN

A robust, sensitive, and time-competitive system to detect Candida albicans in less than 30 min in clinical samples based in capped nanoporous anodic alumina (NAA) is developed. In the proposed design, NAA pores are loaded with rhodamine B and then blocked with an oligonucleotide that is able to recognize C. albicans DNA. The capped material shows negligible cargo release, whereas dye delivery is selectively accomplished when genomic DNA from C. albicans is present. This procedure has been successfully applied to detect C. albicans in clinical samples from patients infected with this yeast. When compared with classical C. albicans detection methods, the proposed probe has a short assay time, high sensitivity and selectivity, demonstrating the high potential of this simple design for the diagnosis of infection produced by C. albicans.


Asunto(s)
Óxido de Aluminio/química , Técnicas Biosensibles/métodos , Candida albicans/aislamiento & purificación , Nanoporos , Oligonucleótidos/química , Candida albicans/genética , Candida albicans/fisiología , ADN de Hongos/análisis , ADN de Hongos/química , Humanos , Límite de Detección , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA