Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 21(1): 259, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34583649

RESUMEN

BACKGROUND: Oral iron supplementation is commonly prescribed for anemia and may play an important role in the gut microbiota recovery of anemic individuals who received antibiotic treatment. This study aims to investigate the effects of iron supplementation on gut microbiota recovery after antibiotics exposure. RESULTS: Mice were subjected to oral antibiotic treatment with neomycin and metronidazole and were fed diets with different concentrations of iron. The composition of the gut microbiota was followed throughout treatment by 16S rRNA sequencing of DNA extracted from fecal samples. Gut microbiota functions were inferred using PICRUSt2, and short-chain fatty acid concentration in fecal samples was assessed by liquid-chromatography mass spectrometry. Iron supplementation after antibiotic exposure shifted the gut microbiota composition towards a Bacteroidetes phylum-dominant composition. At the genus level, the iron-supplemented diet induced an increase in the abundance of Parasutterella and Bacteroides, and a decrease of Bilophila and Akkermansia. Parasutterella excrementihominis, Bacteroides vulgatus, and Alistipes finegoldii, were more abundant with the iron excess diet. Iron-induced shifts in microbiota composition were accompanied by functional modifications, including an enhancement of the biosynthesis of primary bile acids, nitrogen metabolism, cyanoamino acid metabolism and pentose phosphate pathways. Recovery after antibiotic treatment increased propionate levels independent of luminal iron levels, whereas butyrate levels were diminished by excess iron. CONCLUSIONS: Oral iron supplementation after antibiotic therapy in mice may lead to deleterious changes in the recovery of the gut microbiota. Our results have implications on the use of oral iron supplementation after antibiotic exposure and justify further studies on alternative treatments for anemia in these settings.


Asunto(s)
Antibacterianos/efectos adversos , Bacterias/efectos de los fármacos , Suplementos Dietéticos/efectos adversos , Disbiosis/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Hierro/efectos adversos , Animales , Bacterias/clasificación , Biodiversidad , Disbiosis/microbiología , Heces/microbiología , Hierro/farmacología , Ratones
2.
Clin Nutr ; 40(6): 3842-3851, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34130031

RESUMEN

BACKGROUND AND AIMS: Anastomotic leak (AL) is a major complication in colorectal surgery. Recent evidence suggests that the gut microbiota may affect healing and may cause or prevent AL. Butyrate is a beneficial short-chain fatty acid (SCFA) that is produced as a result of bacterial fermentation of dietary oligosaccharides and has been described as beneficial in the maintenance of colonic health. To assess the impact of oligosaccharides on colonic anastomotic healing in mice, we propose to modulate the microbiota with oligosaccharides to increase butyrate production via enhancement of butyrate-producing bacteria and, consequently, improve anastomotic healing in mice. METHODS: Animal experiments were conducted in mice that were subjected to diets supplemented with inulin, galacto-oligosaccharides (GOS) or cellulose, as a control, for two weeks before undergoing a surgical colonic anastomosis. Macroscopic and histological assessment of the anastomosis was performed. Extent of epithelial proliferation was assessed by Ki-67 immunohistochemistry. Gelatin zymography was used to evaluate the extent of matrix metalloproteinase (MMP) hydrolytic activity. RESULTS: Inulin and GOS diets were associated with increased butyrate production and better anastomotic healing. Histological analysis revealed an enhanced mucosal continuity, and this was associated with an increased re-epithelialization of the wound as determined by increased epithelial proliferation. Collagen concentration in peri-anastomotic tissue was higher with inulin and GOS diets and MMP activity, a marker of collagen degradation, was lower with both oligosaccharides. Inulin and GOS diets were further associated with lower bacterial translocation. CONCLUSIONS: Dietary supplementation with inulin and GOS may improve anastomotic healing and reinforce the gut barrier in mice.


Asunto(s)
Fuga Anastomótica/prevención & control , Enfermedades del Colon/cirugía , Ácidos Grasos Volátiles/administración & dosificación , Inulina/administración & dosificación , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Periodo Perioperatorio , Complicaciones Posoperatorias/prevención & control , Resultado del Tratamiento , Cicatrización de Heridas
3.
BMC Cancer ; 21(1): 172, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596864

RESUMEN

BACKGROUND: Colibactin is a genotoxin that induces DNA double-strand breaks that may lead to carcinogenesis and is produced by Escherichia coli strains harboring the pks island. Human and animal studies have shown that colibactin-producing gut bacteria promote carcinogenesis and enhance the progression of colorectal cancer through cellular senescence and chromosomal abnormalities. In this study, we investigated the impact of prebiotics on the genotoxicity of colibactin-producing E. coli strains Nissle 1917 and NC101. METHODS: Bacteria were grown in medium supplemented with 20, 30 and 40 mg/mL of prebiotics inulin or galacto-oligosaccharide, and with or without 5 µM, 25 µM and 125 µM of ferrous sulfate. Colibactin expression was assessed by luciferase reporter assay for the clbA gene, essential for colibactin production, in E. coli Nissle 1917 and by RT-PCR in E. coli NC101. The human epithelial colorectal adenocarcinoma cell line, Caco-2, was used to assess colibactin-induced megalocytosis by methylene blue binding assay and genotoxicity by γ-H2AX immunofluorescence analysis. RESULTS: Inulin and galacto-oligosaccharide enhanced the expression of clbA in pks+ E. coli. However, the addition of 125 µM of ferrous sulfate inhibited the expression of clbA triggered by oligosaccharides. In the presence of either oligosaccharide, E. coli NC101 increased dysplasia and DNA double-strand breaks in Caco-2 cells compared to untreated cells. CONCLUSION: Our results suggest that, in vitro, prebiotic oligosaccharides exacerbate DNA damage induced by colibactin-producing bacteria. Further studies are necessary to establish whether oligosaccharide supplementation may lead to increased colorectal tumorigenesis in animal models colonized with pks+ E. coli.


Asunto(s)
Carcinogénesis/patología , Neoplasias del Colon/patología , Daño del ADN , Escherichia coli/metabolismo , Mutágenos/efectos adversos , Oligosacáridos/farmacología , Péptidos/efectos adversos , Policétidos/efectos adversos , Células CACO-2 , Carcinogénesis/inducido químicamente , Senescencia Celular , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/genética , Islas Genómicas , Humanos
4.
PLoS One ; 14(4): e0208677, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31026259

RESUMEN

Anemia is frequently encountered in patients with inflammatory bowel disease (IBD), decreasing the quality of life and significantly worsening the prognosis of the disease. The pathogenesis of anemia in IBD is multifactorial and results mainly from intestinal blood loss in inflamed mucosa and impaired dietary iron absorption. Multiple studies have proposed the use of the polyphenolic compound curcumin to counteract IBD pathogenesis since it has significant preventive and therapeutic properties as an anti-inflammatory agent and very low toxicity, even at high dosages. However, curcumin has been shown to possess properties consistent with those of an iron-chelator, such as the ability to modulate proteins of iron metabolism and decrease spleen and liver iron content. Thus, this property may further contribute to the development and severity of anemia of inflammation and iron deficiency in IBD. Herein, we evaluate the effects of curcumin on systemic iron balance in the dextran sodium sulfate (DSS) model of colitis in C57Bl/6 and BALB/c mouse strains that were fed an iron-sufficient diet. In these conditions, curcumin supplementation caused mild anemia, lowered iron stores, worsened colitis and significantly decreased overall survival, independent of the mouse strain. These findings suggest that curcumin usage as an anti-inflammatory supplement should be accompanied by monitoring of erythroid parameters to avoid exacerbation of iron deficiency anemia in IBD.


Asunto(s)
Anemia Ferropénica/inducido químicamente , Antiinflamatorios no Esteroideos/efectos adversos , Colitis/tratamiento farmacológico , Curcumina/efectos adversos , Anemia Ferropénica/metabolismo , Anemia Ferropénica/patología , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Colitis/inducido químicamente , Colitis/patología , Curcumina/uso terapéutico , Sulfato de Dextran , Femenino , Hierro de la Dieta/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
5.
Front Microbiol ; 8: 1809, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28983289

RESUMEN

Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD), where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS)-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC) mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis. Thus, luminal heme levels may further exacerbate colitis through the modulation of the gut microbiota and its metagenomic functional composition. Our data may have implications in the development of novel targets for therapeutic approaches aimed at lowering gastrointestinal heme levels through heme chelation or degradation using probiotics and nutritional interventions.

6.
Inflamm Bowel Dis ; 23(5): 753-766, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28368910

RESUMEN

BACKGROUND: Iron is an important nutrient for both the host and colonizing bacteria. Oral iron supplementation may impact the composition of the microbiota and can be particularly damaging to patients suffering from inflammatory bowel disease (IBD). However, patients with IBD may require iron supplementation to treat their anemia. METHODS: We fed mice with diets supplemented with ferrous sulfate at different doses (5, 50, and 500 mg of iron/kg chow) and with different iron formulations (ferrous sulfate, ferrous bisglycinate and ferric ethylenediaminetetraacetic acid [FEDTA]), and analyzed the effects on the composition of the gut microbiota by 16S ribosomal RNA gene sequencing. Using the dextran sodium sulfate (DSS)-induced colitis mouse model, we investigated the effects of iron supplementation in colitis severity, as well as the use of the probiotic Escherichia coli Nissle 1917 (EcN) in combination with iron supplementation. RESULTS: Iron supplementation at different doses induced shifts in the gut microbial communities and inferred metabolic pathways. However, depending on the iron formulation used in the diets, iron supplementation during dextran sodium sulfate-induced colitis was either beneficial (ferrous bisglycinate) or highly detrimental (FEDTA). Finally, the beneficial effect of the probiotic EcN in the dextran sodium sulfate-induced colitis model was potentiated by oral iron supplementation with ferrous sulfate. CONCLUSIONS: These results show that the iron formulations used to treat iron deficiency influence the gut microbiota and colitis in mice and suggest that distinct iron compounds may be of particular relevance to patients with IBD. In addition, the beneficial action of probiotics in IBD may be enhanced by oral iron supplementation.


Asunto(s)
Colitis/dietoterapia , Sulfato de Dextran/toxicidad , Suplementos Dietéticos , Hierro/farmacología , Microbiota , Probióticos/uso terapéutico , Animales , Colitis/etiología , Modelos Animales de Enfermedad , Femenino , Absorción Intestinal , Ratones , Ratones Endogámicos C57BL , Factores Protectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA