Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 32(4): 950-966, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988265

RESUMEN

In Arabidopsis (Arabidopsis thaliana), DNA-dependent RNA polymerase IV (Pol IV) is required for the formation of transposable element (TE)-derived small RNA transcripts. These transcripts are processed by DICER-LIKE3 into 24-nucleotide small interfering RNAs (siRNAs) that guide RNA-directed DNA methylation. In the pollen grain, Pol IV is also required for the accumulation of 21/22-nucleotide epigenetically activated siRNAs, which likely silence TEs via post-transcriptional mechanisms. Despite this proposed role of Pol IV, its loss of function in Arabidopsis does not cause a discernible pollen defect. Here, we show that the knockout of NRPD1, encoding the largest subunit of Pol IV, in the Brassicaceae species Capsella (Capsella rubella), caused postmeiotic arrest of pollen development at the microspore stage. As in Arabidopsis, all TE-derived siRNAs were depleted in Capsella nrpd1 microspores. In the wild-type background, the same TEs produced 21/22-nucleotide and 24-nucleotide siRNAs; these processes required Pol IV activity. Arrest of Capsella nrpd1 microspores was accompanied by the deregulation of genes targeted by Pol IV-dependent siRNAs. TEs were much closer to genes in Capsella compared with Arabidopsis, perhaps explaining the essential role of Pol IV in pollen development in Capsella. Our discovery that Pol IV is functionally required in Capsella microspores emphasizes the relevance of investigating different plant models.


Asunto(s)
Capsella/enzimología , Capsella/crecimiento & desarrollo , ADN Polimerasa beta/metabolismo , Proteínas de Plantas/metabolismo , Polen/enzimología , Polen/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/genética , Secuencia de Bases , ADN Polimerasa beta/química , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Mutación/genética , Tamaño de los Órganos , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , ARN de Planta/genética , ARN Interferente Pequeño/metabolismo , Semillas/anatomía & histología , Transcripción Genética
2.
Plant Cell ; 26(9): 3556-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25217506

RESUMEN

Plants of different ploidy levels are separated by a strong postzygotic hybridization barrier that is established in the endosperm. Deregulated parent-of-origin specific genes cause the response to interploidy hybridizations, revealing an epigenetic basis of this phenomenon. In this study, we present evidence that paternal hypomethylation can bypass the interploidy hybridization barrier by alleviating the requirement for the Polycomb Repressive Complex 2 (PRC2) in the endosperm. PRC2 epigenetically regulates gene expression by applying methylation marks on histone H3. Bypass of the barrier is mediated by suppressed expression of imprinted genes. We show that the hypomethylated pollen genome causes de novo CHG methylation directed to FIS-PRC2 target genes, suggesting that different epigenetic modifications can functionally substitute for each other. Our work presents a method for the generation of viable triploids, providing an impressive example of the potential of epigenome manipulations for plant breeding.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/genética , Hibridación Genética , Ploidias , Polen/genética , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endospermo/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación/genética , Poliploidía , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA