Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Neurobiol ; 60(12): 6950-6974, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37518829

RESUMEN

Physical exercise is well known as a non-pharmacological and holistic therapy believed to prevent and mitigate numerous neurological conditions and alleviate ageing-related cognitive decline. To do so, exercise affects the central nervous system (CNS) at different levels. It changes brain physiology and structure, promoting cognitive improvements, which ultimately improves quality of life. Most of these effects are mediated by neurotrophins release, enhanced adult hippocampal neurogenesis, attenuation of neuroinflammation, modulation of cerebral blood flow, and structural reorganisation, besides to promote social interaction with beneficial cognitive outcomes. In this review, we discuss, based on experimental and human research, how exercise impacts the brain structure and function and how these changes contribute to cognitive improvements. Understanding the mechanisms by which exercise affects the brain is essential to understand the brain plasticity following exercise, guiding therapeutic approaches to improve the quality of life, especially in obesity, ageing, neurodegenerative disorders, and following traumatic brain injury.


Asunto(s)
Encéfalo , Calidad de Vida , Adulto , Humanos , Sistema Nervioso Central , Ejercicio Físico , Cognición
2.
Nutrients ; 11(11)2019 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-31717801

RESUMEN

Methylmercury (MeHg) exposure is a serious problem of public health, especially in the Amazon. Exposure in riverine populations is responsible for neurobehavioral abnormalities. It was hypothesized that consumption of Amazonian fruits could protect by reducing mercury accumulation. This work analyzed the effects of commercial samples of Euterpe oleracea (EO) for human consumption (10 µL/g) against MeHg i.p. exposure (2.5 mg/Kg), using neurobehavioral (open field, rotarod and pole tests), biochemical (lipid peroxidation and nitrite levels), aging-related (telomerase reverse transcriptase (TERT) mRNA expression) and toxicokinetic (MeHg content) parameters in mice. Both the pole and rotarod tests were the most sensitive tests accompanied by increased lipid peroxidation and nitrite levels in brains. MeHg reduced TERT mRNA about 50% demonstrating a strong pro-aging effect. The EO intake, similar to that of human populations, prevented all alterations, without changing the mercury content, but avoiding neurotoxicity and premature aging of the Central Nervous System (CNS). Contrary to the hypothesis found in the literature on the possible chelating properties of Amazonian fruits consumption, the effect of EO would be essentially pharmacodynamics, and possible mechanisms are discussed. Our data already support the regular consumption of EO as an excellent option for exposed Amazonian populations to have additional protection against MeHg intoxication.


Asunto(s)
Euterpe , Jugos de Frutas y Vegetales , Mercurio/toxicidad , Neurotoxinas/toxicidad , Extractos Vegetales/farmacología , Animales , Antioxidantes/farmacología , Conducta Animal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Destreza Motora/efectos de los fármacos , Telómero/efectos de los fármacos
3.
Cells ; 8(10)2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652490

RESUMEN

Microglia originate from yolk sac-primitive macrophages and auto-proliferate into adulthood without replacement by bone marrow-derived circulating cells. In inflammation, stroke, aging, or infection, microglia have been shown to contribute to brain pathology in both deleterious and beneficial ways, which have been studied extensively. However, less is known about their role in the healthy adult brain. Astrocytes and oligodendrocytes are widely accepted to strongly contribute to the maintenance of brain homeostasis and to modulate neuronal function. On the other hand, contribution of microglia to cognition and behavior is only beginning to be understood. The ability to probe their function has become possible using microglial depletion assays and conditional mutants. Studies have shown that the absence of microglia results in cognitive and learning deficits in rodents during development, but this effect is less pronounced in adults. However, evidence suggests that microglia play a role in cognition and learning in adulthood and, at a cellular level, may modulate adult neurogenesis. This review presents the case for repositioning microglia as key contributors to the maintenance of homeostasis and cognitive processes in the healthy adult brain, in addition to their classical role as sentinels coordinating the neuroinflammatory response to tissue damage and disease.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Aprendizaje/fisiología , Microglía/fisiología , Adulto , Animales , Astrocitos/citología , Astrocitos/fisiología , Encéfalo/citología , Humanos , Microglía/citología , Oligodendroglía/citología , Oligodendroglía/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA