Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 14(12): 2294-2301, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37289979

RESUMEN

Parkinson's disease (PD) is an incurable neurodegenerative disorder caused by the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Current therapies are only symptomatic and are not able to stop or delay its progression. In order to search for new and more effective therapies, our group carried out a high-throughput screening assay, identifying several candidate compounds that are able to improve locomotor ability in DJ-1ß mutant flies (a Drosophila model of familial PD) and reduce oxidative stress (OS)-induced lethality in DJ-1-deficient SH-SY5Y human cells. One of them was vincamine (VIN), a natural alkaloid obtained from the leaves of Vinca minor. Our results showed that VIN is able to suppress PD-related phenotypes in both Drosophila and human cell PD models. Specifically, VIN reduced OS levels in PD model flies. Besides, VIN diminished OS-induced lethality by decreasing apoptosis, increased mitochondrial viability, and reduced OS levels in DJ-1-deficient human cells. In addition, our results show that VIN might be exerting its beneficial role, at least partially, by the inhibition of voltage-gated sodium channels. Therefore, we propose that these channels might be a promising target in the search for new compounds to treat PD and that VIN represents a potential therapeutic treatment for the disease.


Asunto(s)
Proteínas de Drosophila , Neuroblastoma , Enfermedad de Parkinson , Vincamina , Animales , Humanos , Suplementos Dietéticos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas del Tejido Nervioso/genética , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/farmacología , Proteína Desglicasa DJ-1/uso terapéutico , Vincamina/farmacología , Vincamina/uso terapéutico
2.
Free Radic Biol Med ; 108: 683-691, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28455141

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. It is caused by a loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrease in dopamine levels in the striatum and thus producing movement impairment. Major physiological causes of neurodegeneration in PD are oxidative stress (OS) and mitochondrial dysfunction; these pathophysiological changes can be caused by both genetic and environmental factors. Although most PD cases are sporadic, it has been shown that 5-10% of them are familial forms caused by mutations in certain genes. One of these genes is the DJ-1 oncogene, which is involved in an early-onset recessive PD form. Currently, PD is an incurable disease for which existing therapies are not sufficiently effective to counteract or delay the progression of the disease. Therefore, the discovery of alternative drugs for the treatment of PD is essential. In this study we used a Drosophila PD model to identify candidate compounds with therapeutic potential for this disease. These flies carry a loss-of-function mutation in the DJ-1ß gene, the Drosophila ortholog of human DJ-1, and show locomotor defects reflected by a reduced climbing ability. A pilot modifier chemical screen was performed, and several candidate compounds were identified based on their ability to improve locomotor activity of PD model flies. We demonstrated that some of them were also able to reduce OS levels in these flies. To validate the compounds identified in the Drosophila screen, a human cell PD model was generated by knocking down DJ-1 function in SH-SY5Y neuroblastoma cells. Our results showed that some of the compounds were also able to increase the viability of the DJ-1-deficient cells subjected to OS, thus supporting the use of Drosophila for PD drug discovery. Interestingly, some of them have been previously proposed as alternative therapies for PD or tested in clinical trials and others are first suggested in this study as potential drugs for the treatment of this disease.


Asunto(s)
Proteínas de Drosophila/genética , Locomoción/efectos de los fármacos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Enfermedad de Parkinson/tratamiento farmacológico , Proteína Desglicasa DJ-1/genética , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Modelos Animales de Enfermedad , Drosophila , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Técnicas de Silenciamiento del Gen , Humanos , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA