Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Curr Biol ; 28(14): 2291-2301.e5, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30017482

RESUMEN

Stress elicits a variety of autonomic responses, including hyperthermia (stress fever) in humans and animals. In this present study, we investigated the circuit basis for thermogenesis and heat conservation during this response. We first demonstrated the glutamatergic identity of the dorsal hypothalamic area (DHAVglut2) neurons that innervate the raphe pallidus nucleus (RPa) to regulate core temperature (Tc) and mediate stress-induced hyperthermia. Then, using chemogenetic and optogenetic methods to manipulate this hypothalamomedullary circuit, we found that activation of DHAVglut2 neurons potently drove an increase in Tc, but surprisingly, stress-induced hyperthermia was only reduced by about one-third when they were inhibited. Further investigation showed that DHAVglut2 neurons activate brown adipose tissue (BAT) but do not cause vasoconstriction, instead allowing reflex tail artery vasodilation as a response to BAT-induced hyperthermia. Retrograde rabies virus tracing revealed projections from DHAVglut2 neurons to RPaVglut3, but not to RPaGABA neurons, and identified a set of inputs to DHAVglut2 → RPa neurons that are likely to mediate BAT activation. The dissociation of the DHAVglut2 thermogenic pathway from the thermoregulatory vasoconstriction (heat-conserving) pathway may explain stress flushing (skin vasodilation but a feeling of being too hot) during stressful times.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Fiebre/fisiopatología , Hipotálamo/metabolismo , Neuronas/fisiología , Termogénesis , Animales , Femenino , Masculino , Ratones , Núcleo Pálido del Rafe/fisiología , Optogenética , Estrés Fisiológico
2.
Sleep ; 41(9)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850898

RESUMEN

The hypothalamus is a central hub for regulating sleep-wake patterns, the circuitry of which has been investigated extensively in experimental animals. This work has identified a wake-promoting region in the posterior hypothalamus, with connections to other wake-promoting regions, and a sleep-promoting region in the anterior hypothalamus, with inhibitory projections to the posterior hypothalamus. It is unclear whether a similar organization exists in humans. Here, we use anatomical landmarks to identify homologous sleep- and wake-promoting regions of the human hypothalamus and investigate their functional relationships using resting-state functional connectivity magnetic resonance imaging in healthy awake participants. First, we identify a negative correlation (anticorrelation) between the anterior and posterior hypothalamus, two regions with opposing roles in sleep-wake regulation. Next, we show that hypothalamic connectivity predicts a pattern of regional sleep-wake changes previously observed in humans. Specifically, regions that are more positively correlated with the posterior hypothalamus and more negatively correlated with the anterior hypothalamus correspond to regions with the greatest change in cerebral blood flow between sleep-wake states. Taken together, these findings provide preliminary evidence relating a hypothalamic circuit investigated in animals to sleep-wake neuroimaging results in humans, with implications for our understanding of human sleep-wake regulation and the functional significance of anticorrelations.


Asunto(s)
Hipotálamo/diagnóstico por imagen , Hipotálamo/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Descanso/fisiología , Sueño/fisiología , Vigilia/fisiología , Adulto , Animales , Estudios de Cohortes , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
3.
Nat Neurosci ; 21(5): 717-724, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632359

RESUMEN

'Sundowning' in dementia and Alzheimer's disease is characterized by early-evening agitation and aggression. While such periodicity suggests a circadian origin, whether the circadian clock directly regulates aggressive behavior is unknown. We demonstrate that a daily rhythm in aggression propensity in male mice is gated by GABAergic subparaventricular zone (SPZGABA) neurons, the major postsynaptic targets of the central circadian clock, the suprachiasmatic nucleus. Optogenetic mapping revealed that SPZGABA neurons receive input from vasoactive intestinal polypeptide suprachiasmatic nucleus neurons and innervate neurons in the ventrolateral part of the ventromedial hypothalamus (VMH), which is known to regulate aggression. Additionally, VMH-projecting dorsal SPZ neurons are more active during early day than early night, and acute chemogenetic inhibition of SPZGABA transmission phase-dependently increases aggression. Finally, SPZGABA-recipient central VMH neurons directly innervate ventrolateral VMH neurons, and activation of this intra-VMH circuit drove attack behavior. Altogether, we reveal a functional polysynaptic circuit by which the suprachiasmatic nucleus clock regulates aggression.


Asunto(s)
Agresión/fisiología , Ritmo Circadiano/fisiología , Hipotálamo/fisiología , Vías Nerviosas/fisiología , Animales , Mapeo Encefálico , Corticosterona/sangre , Potenciales Postsinápticos Excitadores/fisiología , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Optogenética , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/fisiología , Núcleo Supraquiasmático/fisiología , Péptido Intestinal Vasoactivo/fisiología , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología , Ácido gamma-Aminobutírico/fisiología
4.
Neuron ; 96(5): 1153-1167.e5, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29103805

RESUMEN

The precise neural circuitry that mediates arousal during sleep apnea is not known. We previously found that glutamatergic neurons in the external lateral parabrachial nucleus (PBel) play a critical role in arousal to elevated CO2 or hypoxia. Because many of the PBel neurons that respond to CO2 express calcitonin gene-related peptide (CGRP), we hypothesized that CGRP may provide a molecular identifier of the CO2 arousal circuit. Here, we report that selective chemogenetic and optogenetic activation of PBelCGRP neurons caused wakefulness, whereas optogenetic inhibition of PBelCGRP neurons prevented arousal to CO2, but not to an acoustic tone or shaking. Optogenetic inhibition of PBelCGRP terminals identified a network of forebrain sites under the control of a PBelCGRP switch that is necessary to arouse animals from hypercapnia. Our findings define a novel cellular target for interventions that may prevent sleep fragmentation and the attendant cardiovascular and cognitive consequences seen in obstructive sleep apnea. VIDEO ABSTRACT.


Asunto(s)
Nivel de Alerta/genética , Hipercapnia/genética , Hipercapnia/fisiopatología , Sueño/genética , Estimulación Acústica , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Electroencefalografía , Electromiografía , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiopatología , Neuronas , Optogenética , Técnicas de Placa-Clamp , Prosencéfalo/fisiopatología , Respiración , Síndromes de la Apnea del Sueño/fisiopatología
5.
Neuroscience ; 336: 102-113, 2016 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-27595887

RESUMEN

Currently available evidence indicates that neurons containing melanin-concentrating hormone (MCH) in the lateral hypothalamus are critical modulators of sleep-wakefulness, but their precise role in this function is not clear. Studies employing optogenetic stimulation of MCH neurons have yielded inconsistent results, presumably due to differences in the optogenetic stimulation protocols, which do not approximate normal patterns of cell firing. In order to resolve this discrepancy, we (1) selectively activated the MCH neurons using a chemogenetic approach (Cre-dependent hM3Dq expression) and (2) selectively destroyed MCH neurons using a genetically targeted diphtheria toxin deletion method, and studied the changes in sleep-wake in mice. Our results indicate that selective activation of MCH neurons causes specific increases in rapid eye movement (REM) sleep without altering wake or non-REM (NREM) sleep. On the other hand, selective deletions of MCH neurons altered the diurnal rhythm of wake and REM sleep without altering their total amounts. These results indicate that activation of MCH neurons primarily drives REM sleep and their presence may be necessary for normal expression of diurnal variation of REM sleep and wake.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Neuronas/metabolismo , Hormonas Hipofisarias/metabolismo , Sueño REM/fisiología , Animales , Conducta Animal/fisiología , Ratones Transgénicos , Optogenética/métodos , Vigilia
6.
Brain Res ; 1645: 12-4, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-26944298

RESUMEN

The 1970s saw the introduction of new technologies for tracing axons both anterogradely and retrogradely. These methods allowed us to visualize fine, unmyelinated pathways for the first time, such as the hypothalamic pathways that control the autonomic nervous system. As a result, we were able to identify the paraventricular nucleus and lateral hypothalamus as the key sites that provide direct inputs to the autonomic preganglionic neurons in the medulla and spinal cord. These findings revolutionized our understanding of hypothalamic control of the autonomic nervous system.


Asunto(s)
Sistema Nervioso Autónomo/anatomía & histología , Hipotálamo/anatomía & histología , Neuroanatomía/historia , Animales , Historia del Siglo XX , Humanos , Bulbo Raquídeo/anatomía & histología , Vías Nerviosas/anatomía & histología , Técnicas de Trazados de Vías Neuroanatómicas/historia , Neuroanatomía/métodos , Neuronas/citología , Núcleo Hipotalámico Paraventricular/anatomía & histología , Médula Espinal/anatomía & histología
8.
J Comp Neurol ; 521(14): 3133-53, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23787784

RESUMEN

A solitary cluster of parvalbumin-positive neurons--the PV1 nucleus--has been observed in the lateral hypothalamus of rodents. In the present study, we mapped the efferent connections of the PV1 nucleus using nonspecific antero- and retrograde tracers in rats, and chemoselective, Cre-dependent viral constructs in parvalbumin-Cre mice. In both species, the PV1 nucleus was found to project mainly to the periaqueductal grey matter (PAG), predominantly ipsilaterally. Indirectly in rats and directly in mice, a discrete, longitudinally oriented cylindrical column of terminal fields (PV1-CTF) was identified ventrolateral to the aqueduct on the edge of the PAG. The PV1-CTF is particularly dense in the rostral portion, which is located in the supraoculomotor nucleus (Su3). It is spatially interrupted over a short stretch at the level of the trochlear nucleus and abuts caudally on a second parvalbumin-positive (PV2) nucleus. The rostral and the caudal portions of the PV1-CTF consist of axonal endings, which stem from neurons scattered throughout the PV1 nucleus. Topographically, the longitudinal orientation of the PV1-CTF accords with that of the likewise longitudinally oriented functional modules of the PAG, but overlaps none of them. Minor terminal fields were identified in a crescentic column of the lateral PAG, as well as in the Edinger-Westphal, the lateral habenular, and the laterodorsal tegmental nuclei. So far, no obvious functions have been attributed to this small, circumscribed column ventrolateral to the aqueduct, the prime target of the PV1 nucleus.


Asunto(s)
Hipotálamo/citología , Vías Nerviosas/fisiología , Neuronas/metabolismo , Parvalbúminas/metabolismo , Adenoviridae , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Mapeo Encefálico , Channelrhodopsins , Dextranos/metabolismo , Femenino , Lateralidad Funcional , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Parvalbúminas/genética , Sustancia Gris Periacueductal/citología , Sustancia Gris Periacueductal/metabolismo , Ratas , Ratas Wistar , Aglutinina del Germen de Trigo-Peroxidasa de Rábano Silvestre Conjugada/metabolismo , Proteína Fluorescente Roja
9.
J Neurosci ; 33(18): 7627-40, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23637157

RESUMEN

The mechanisms of arousal from apneas during sleep in patients suffering from obstructive sleep apnea are not well understood. However, we know that respiratory chemosensory pathways converge on the parabrachial nucleus (PB), which sends glutamatergic projections to a variety of forebrain structures critical to arousal, including the basal forebrain, lateral hypothalamus, midline thalamus, and cerebral cortex. We tested the role of glutamatergic signaling in this pathway by developing an animal model for repetitive CO2 arousals (RCAs) and investigating the effect of deleting the gene for the vesicular glutamate transporter 2 (Vglut2) from neurons in the PB. We used mice with lox P sequences flanking exon2 of the Vglut2 gene, in which adeno-associated viral vectors containing genes encoding Cre recombinase and green fluorescent protein were microinjected into the PB to permanently and selectively disrupt Vglut2 expression while labeling the affected neurons. We recorded sleep in these mice and then investigated the arousals during RCA. Vglut2 deletions that included the external lateral and lateral crescent subdivisions of the lateral PB more than doubled the latency to arousal and resulted in failure to arouse by 30 s in >30% of trials. By contrast, deletions that involved the medial PB subdivision had minimal effects on arousal during hypercapnia but instead increased non-rapid eye movement (NREM) sleep by ∼43% during the dark period, and increased delta power in the EEG during NREM sleep by ∼50%. Our results suggest that glutamatergic neurons in the lateral PB are necessary for arousals from sleep in response to CO2, while medial PB glutamatergic neurons play an important role in promoting spontaneous waking.


Asunto(s)
Nivel de Alerta , Tronco Encefálico/fisiología , Ácido Glutámico/metabolismo , Hipercapnia/fisiopatología , Transducción de Señal/fisiología , Estimulación Acústica , Análisis de Varianza , Animales , Toxina Diftérica/farmacología , Electroencefalografía , Electromiografía , Movimientos Oculares/fisiología , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pletismografía , Tiempo de Reacción/fisiología , Sueño/fisiología , Factores de Tiempo , Proteína 2 de Transporte Vesicular de Glutamato/deficiencia , Proteína 2 de Transporte Vesicular de Glutamato/genética
10.
J Comp Neurol ; 520(9): 1985-2001, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22173709

RESUMEN

The pontine noradrenergic cell groups, A5, A6 (locus coeruleus), and A7, provide the only noradrenergic innervation of the spinal cord, but the individual contribution of each of these populations to the regional innervation of the spinal cord remains controversial. We used an adeno-associated viral (AAV) vector encoding green fluorescent protein under an artificial dopamine beta-hydroxylase (PRSx8) promoter to trace the spinal projections from the A5, A6, and A7 groups. Projections from all three groups travel through the spinal cord in both the lateral and ventral funiculi and in the dorsal surface of the dorsal horn, but A6 axons take predominantly the dorsal and ventral routes, whereas A5 axons take mainly a lateral and A7 axons a ventral route. The A6 group provides the densest innervation at all levels, and includes all parts of the spinal gray matter, but it is particularly dense in the dorsal horn. The A7 group provides the next most dense innervation, again including all parts of the spinal cord, but is it denser in the ventral horn. The A5 group supplies only sparse innervation to the dorsal and ventral horns and to the cervical and lumbosacral levels, but provides the densest innervation to the thoracic intermediolateral cell column, and in particular to the sympathetic preganglionic neurons. Thus, the pontine noradrenergic cell groups project in a roughly topographic and complementary fashion onto the spinal cord. The pattern of spinal projections observed suggests that the locus coeruleus might have the greatest effect on somatosensory transmission, the A7 group on motor function, and the A5 group on sympathetic function.


Asunto(s)
Vías Aferentes/fisiología , Locus Coeruleus/citología , Norepinefrina/metabolismo , Núcleo Solitario/citología , Médula Espinal/citología , Animales , Colina O-Acetiltransferasa/metabolismo , Dependovirus/genética , Dopamina beta-Hidroxilasa/metabolismo , Lateralidad Funcional , Proteínas Fluorescentes Verdes/genética , Masculino , Microinyecciones , Fosfopiruvato Hidratasa/metabolismo , Fitohemaglutininas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción Genética
11.
J Comp Neurol ; 519(5): 933-56, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21280045

RESUMEN

The "ascending reticular activating system" theory proposed that neurons in the upper brainstem reticular formation projected to forebrain targets that promoted wakefulness. More recent formulations have emphasized that most neurons at the pontomesencephalic junction that participate in these pathways are actually in monoaminergic and cholinergic cell groups. However, cell-specific lesions of these cell groups have never been able to reproduce the deep coma seen after acute paramedian midbrain lesions that transect ascending axons at the caudal midbrain level. To determine whether the cortical afferents from the thalamus or the basal forebrain were more important in maintaining arousal, we first placed large cell-body-specific lesions in these targets. Surprisingly, extensive thalamic lesions had little effect on electroencephalographic (EEG) or behavioral measures of wakefulness or on c-Fos expression by cortical neurons during wakefulness. In contrast, animals with large basal forebrain lesions were behaviorally unresponsive and had a monotonous sub-1-Hz EEG, and little cortical c-Fos expression during continuous gentle handling. We then retrogradely labeled inputs to the basal forebrain from the upper brainstem, and found a substantial input from glutamatergic neurons in the parabrachial nucleus and adjacent precoeruleus area. Cell-specific lesions of the parabrachial-precoeruleus complex produced behavioral unresponsiveness, a monotonous sub-1-Hz cortical EEG, and loss of cortical c-Fos expression during gentle handling. These experiments indicate that in rats the reticulo-thalamo-cortical pathway may play a very limited role in behavioral or electrocortical arousal, whereas the projection from the parabrachial nucleus and precoeruleus region, relayed by the basal forebrain to the cerebral cortex, may be critical for this process.


Asunto(s)
Nivel de Alerta/fisiología , Vías Nerviosas/anatomía & histología , Prosencéfalo/anatomía & histología , Prosencéfalo/fisiología , Animales , Conducta Animal/fisiología , Electroencefalografía , Electromiografía , Agonistas de Aminoácidos Excitadores/farmacología , Humanos , Ácido Iboténico/farmacología , Masculino , Vías Nerviosas/patología , Vías Nerviosas/fisiología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Sueño/fisiología , Tálamo/anatomía & histología , Tálamo/efectos de los fármacos , Tálamo/patología , Tálamo/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Vigilia/fisiología
13.
J Comp Neurol ; 518(11): 2090-108, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20394060

RESUMEN

Tracing the axonal projections of selected neurons is labor intensive and inherently limited by currently available neuroanatomical methods. We developed an adeno-associated virus (AAV) that can be used for efficiently tracing identified neuronal populations. The virus encodes a humanized Renilla green fluorescent protein (hrGFP) that is transcriptionally silenced by a neo cassette flanked by LoxH/LoxP sites (AAV-lox-Stop-hrGFP). Thus, hrGFP is expressed only in neurons with Cre recombinase activity. To demonstrate the utility of this approach, the virus was injected unilaterally into the dorsomedial hypothalamus (DMH) of mice that express Cre in neurons expressing the leptin receptor. Animals with DMH injections showed robust hrGFP expression in DMH neurons, as visualized by its endogenous fluorescence or following immunolabeling. We found that hrGFP was expressed in approximately one-third to one-half of Cre-expressing neurons at the site of injection, but not in non-Cre-expressing neurons. The expression of GFP allowed us to identify the projection fields of DMH leptin-responsive neurons. Our results show hrGFP-positive axonal projections and terminals in the paraventricular nucleus of the hypothalamus, arcuate nucleus, preoptic area, bed nucleus of the stria terminalis, paraventricular thalamus, periaqueductal gray, and precoeruleus. The aforementioned pattern of projections was similar to DMH projections determined by injections of biotinylated dextran amine in the mouse DMH. Interestingly, some hrGFP-positive terminals were seen contacting the ependymal layer of the third and fourth ventricles. In summary, this approach is an effective tool for tracing axonal projections of chemically identified neurons, including leptin-responsive neurons.


Asunto(s)
Vías Eferentes/anatomía & histología , Hipotálamo/citología , Leptina/metabolismo , Neuronas , Coloración y Etiquetado/métodos , Animales , Dependovirus/genética , Dependovirus/metabolismo , Vías Eferentes/fisiología , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Integrasas/metabolismo , Ratones , Neuronas/citología , Neuronas/fisiología
14.
Nat Neurosci ; 13(2): 239-45, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20062053

RESUMEN

The perception of migraine headache, which is mediated by nociceptive signals transmitted from the cranial dura mater to the brain, is uniquely exacerbated by exposure to light. We found that exacerbation of migraine headache by light is prevalent among blind individuals who maintain non-image-forming photoregulation in the face of massive rod/cone degeneration. Using single-unit recording and neural tract tracing in the rat, we identified dura-sensitive neurons in the posterior thalamus whose activity was distinctly modulated by light and whose axons projected extensively across layers I-V of somatosensory, visual and associative cortices. The cell bodies and dendrites of such dura/light-sensitive neurons were apposed by axons originating from retinal ganglion cells (RGCs), predominantly from intrinsically photosensitive RGCs, the principle conduit of non-image-forming photoregulation. We propose that photoregulation of migraine headache is exerted by a non-image-forming retinal pathway that modulates the activity of dura-sensitive thalamocortical neurons.


Asunto(s)
Luz/efectos adversos , Trastornos Migrañosos/etiología , Trastornos Migrañosos/fisiopatología , Neuronas/fisiología , Retina/fisiopatología , Tálamo/fisiopatología , Adulto , Animales , Axones/fisiología , Ceguera/epidemiología , Ceguera/fisiopatología , Corteza Cerebral/fisiopatología , Dendritas/fisiología , Duramadre/fisiopatología , Femenino , Humanos , Incidencia , Masculino , Trastornos Migrañosos/epidemiología , Vías Nerviosas/fisiopatología , Prevalencia , Ratas , Células Ganglionares de la Retina/fisiología
15.
J Neurosci ; 29(38): 11954-64, 2009 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-19776281

RESUMEN

Sympathetic premotor neurons in the rostral medullary raphe (RMR) regulate heat conservation by tail artery vasoconstriction and brown adipose tissue thermogenesis. These neurons are a critical relay in the pathway that increases body temperature. However, the origins of the inputs that activate the RMR during cold exposure have not been definitively identified. We investigated the afferents to the RMR that were activated during cold by examining Fos expression in retrogradely labeled neurons after injection of cholera toxin B subunit (CTb) in the RMR. These experiments identified a cluster of Fos-positive neurons in the dorsomedial hypothalamic nucleus and dorsal hypothalamic area (DMH/DHA) with projections to the RMR that may mediate cold-induced elevation of body temperature. Also, neurons in the median preoptic nucleus (MnPO) and dorsolateral preoptic area (DLPO) and in the A7 noradrenergic cell group were retrogradely labeled but lacked Fos expression, suggesting that they may inhibit the RMR. To investigate whether individual or common preoptic neurons project to the RMR and DMH/DHA, we injected CTb into the RMR and Fluorogold into the DMH/DHA. We found that projections from the DLPO and MnPO to the RMR and DMH/DHA emerge from largely separate neuronal populations, indicating they may be differentially regulated. Combined cell-specific lesions of MnPO and DLPO, but not lesions of either one alone, caused baseline hyperthermia. Our data suggest that the MnPO and DLPO provide parallel inhibitory pathways that tonically inhibit the DMH/DHA and the RMR at baseline, and that hyperthermia requires the release of this inhibition from both nuclei.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Área Preóptica/fisiología , Núcleos del Rafe/fisiología , Animales , Temperatura Corporal , Catecolaminas/metabolismo , Toxina del Cólera , Frío , Fiebre/inducido químicamente , Fiebre/fisiopatología , Lipopolisacáridos , Masculino , Vías Nerviosas/lesiones , Vías Nerviosas/fisiología , Norepinefrina/metabolismo , Área Preóptica/lesiones , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
17.
Prog Brain Res ; 153: 243-52, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16876579

RESUMEN

Daily patterns of sleep and wakefulness are inextricably linked to the regulation of feeding and energy metabolism. Both are affected by homeostatic as well as circadian drives, and both are tightly linked to thermoregulation. In this chapter, we review the basic drain circuitry that regulates sleep and wakefulness, including the flip-flop switch relationship of the arousal system and the ventrolateral preoptic sleep-promoting neurons. We then examine the role of the orexin/hypocretin neurons, which stabilize the switch while driving both wakefulness and foraging for food. We also review the role of the subparaventricular nucleus and the dorsomedial nucleus of the hypothalamus in circadian integration and modulation of both feeding and wake-sleep patterns.


Asunto(s)
Ritmo Circadiano/fisiología , Ingestión de Alimentos/fisiología , Hipotálamo/fisiología , Sueño/fisiología , Animales , Conducta Alimentaria/fisiología , Humanos , Hipotálamo/citología , Vías Nerviosas/fisiología , Neuronas/fisiología
18.
J Comp Neurol ; 493(1): 92-8, 2005 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-16254994

RESUMEN

A good night's sleep is one of life's most satisfying experiences, while sleeplessness is stressful and causes cognitive impairment. Yet the mechanisms that regulate the ability to sleep have only recently been subjected to detailed investigation. New studies show that the control of wake and sleep emerges from the interaction of cell groups that cause arousal with other nuclei that induce sleep such as the ventrolateral preoptic nucleus (VLPO). The VLPO inhibits the ascending arousal regions and is in turn inhibited by them, thus forming a mutually inhibitory system resembling what electrical engineers call a "flip-flop switch." This switch may help produce sharp transitions between discrete behavioral states, but it is not necessarily stable. The orexin neurons in the lateral hypothalamus may help stabilize this system by exciting arousal regions during wakefulness, preventing unwanted transitions between wakefulness and sleep. The importance of this stabilizing role is apparent in narcolepsy, in which an absence of the orexin neurons causes numerous, unintended transitions in and out of sleep and allows fragments of REM sleep to intrude into wakefulness. These influences on the sleep/wake system by homeostatic and circadian drives, as well as emotional inputs, are reviewed. Understanding the pathways that underlie the regulation of sleep and wakefulness may provide important insights into how the cognitive and emotional systems interact with basic homeostatic and circadian drives for sleep.


Asunto(s)
Ritmo Circadiano/fisiología , Emociones/fisiología , Sueño/fisiología , Animales , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Homeostasis/fisiología , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Narcolepsia/fisiopatología , Neuronas/fisiología , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Orexinas , Área Preóptica/efectos de los fármacos , Área Preóptica/fisiología , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Estrés Fisiológico/fisiopatología , Núcleos Talámicos Ventrales/fisiología , Vigilia/fisiología
19.
Nature ; 437(7063): 1257-63, 2005 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-16251950

RESUMEN

A series of findings over the past decade has begun to identify the brain circuitry and neurotransmitters that regulate our daily cycles of sleep and wakefulness. The latter depends on a network of cell groups that activate the thalamus and the cerebral cortex. A key switch in the hypothalamus shuts off this arousal system during sleep. Other hypothalamic neurons stabilize the switch, and their absence results in inappropriate switching of behavioural states, such as occurs in narcolepsy. These findings explain how various drugs affect sleep and wakefulness, and provide the basis for a wide range of environmental influences to shape wake-sleep cycles into the optimal pattern for survival.


Asunto(s)
Ritmo Circadiano/fisiología , Hipotálamo/fisiología , Sueño/fisiología , Animales , Nivel de Alerta/fisiología , Humanos , Hipotálamo/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuropéptidos/metabolismo , Orexinas , Vigilia/fisiología
20.
Biol Psychiatry ; 58(5): 408-16, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16023618

RESUMEN

BACKGROUND: The role of the striatum in the pathophysiology of schizophrenia is not understood. In a previous postmortem study, we found a reduction in the density of striatal interneurons that stain immunohistochemically for choline acetyltransferase (ChAT) in schizophrenia. METHODS: To determine whether this finding represents a specific alteration in ChAT gene expression, we used in situ hybridization to study the striatum of 11 control and 9 schizophrenic subjects with oligonucleotide probes complementary to human ChAT mRNA, preprosomatostatin (PPS) mRNA, and beta-actin mRNA. Densities of ChAT mRNA-positive neurons, ChAT mRNA expression per neuron, PPS mRNA-positive neurons, and beta-actin mRNA expression levels were measured. RESULTS: There were no significant differences between the two groups in densities of PPS mRNA-positive neurons and levels of beta-actin mRNA expression throughout the striatum, or in densities of ChAT mRNA-positive neurons in the caudate nucleus or putamen. However, in the ventral striatum, the mean density of ChAT mRNA-positive neurons was reduced to 26% of control levels in the schizophrenic group. CONCLUSIONS: There is a reduction in number or function of the cholinergic interneurons of the ventral striatum in schizophrenia.


Asunto(s)
Ganglios Basales/citología , Colina O-Acetiltransferasa/metabolismo , Interneuronas/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Adulto , Anciano , Ganglios Basales/metabolismo , Recuento de Células/métodos , Colina O-Acetiltransferasa/genética , Femenino , Humanos , Hibridación in Situ/métodos , Masculino , Persona de Mediana Edad , Cambios Post Mortem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA