Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plants (Basel) ; 11(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35736728

RESUMEN

Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments.

2.
Cells ; 10(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200247

RESUMEN

Tissue homeostasis mainly depends on the activity of stem cells to replace damaged elements and restore tissue functions. Within this context, mesenchymal stem cells and fibroblasts are essential for maintaining tissue homeostasis in skin, in particular in the dermis. Modifications in collagen fibers are able to affect stem cell features. Skin properties can be significantly reduced after injuries or with aging, and stem cell niches, mainly comprising extracellular matrix (ECM), may be compromised. To this end, specific molecules can be administrated to prevent the aging process induced by UV exposure in the attempt to maintain a youngness phenotype. NanoPCL-M is a novel nanodevice able to control delivery of Mediterranean plant myrtle (Myrtus communis L.) extracts. In particular, we previously described that myrtle extracts, rich in bioactive molecules and nutraceuticals, were able to counteract senescence in adipose derived stem cells. In this study, we analyzed the effect of NanoPCL-M on skin stem cells (SSCs) and dermal fibroblasts in a dynamic cell culture model in order to prevent the effects of UV-induced senescence on proliferation and collagen depot. The BrdU assay results highlight the significantly positive effect of NanoPCL-M on the proliferation of both fibroblasts and SSCs. Our results demonstrate that-M is able to preserve SSCs features and collagen depot after UV-induced senescence, suggesting their capability to retain a young phenotype.


Asunto(s)
Tejido Adiposo/metabolismo , Senescencia Celular/efectos de los fármacos , Myrtus/química , Nanofibras/química , Fitoquímicos , Extractos Vegetales , Células Madre/metabolismo , Fibroblastos/metabolismo , Humanos , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología
3.
J Sci Food Agric ; 101(10): 4229-4240, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33426638

RESUMEN

BACKGROUND: In the postharvest handling of horticultural commodities, plant extracts with fungicidal activity are a valid alternative to synthetic fungicides. The fungicidal activity of myrtle leaf extracts from eight cultivars was studied in vitro against Penicillium digitatum, Penicillium italicum, and Penicillium expansum and on artificially inoculated mandarins with green and blue molds during storage for 12 days at 20 °C and 90% RH. RESULTS: Hydroxybenzoic acids, hydrolysable tannins, and flavonols were identified by high-performance liquid chromatography (HPLC). Despite sharing the same phenolic profile, extracts of eight myrtle cultivars significantly differed in the concentration of phenolics. Hydrolysable tannins are the principal subclass representing nearly 44.9% of the total polyphenols, whereas myricitrin was the most abundant flavonol in all cultivars. Myrtle extracts strongly inhibited conidial germination of the pathogens tested, although the greatest efficacy was observed against P. digitatum. At a concentration of 20 g L-1 , all the extracts completely inhibited fungi growth; only 'Angela', 'Tonina' and 'Grazia' extracts were effective at lower concentrations (15 g L-1 ). On inoculated fruit, myrtle extracts significantly controlled rot development. As a preventive treatment, 'Ilaria' and 'Maria Rita' extracts significantly reduced the rate of fruit with green mold decay lesions. When applied as a curative treatment, all the exacts decreased the incidence of decay. Against P. italicum, all the extracts applied as preventive treatments controlled decay effectively, while as curative treatment some of the extracts were not effective. All the extracts reduced the size of the infected areas. CONCLUSION: The results propose myrtle extracts as a possible natural alternative to synthetic fungicides. © 2021 Society of Chemical Industry.


Asunto(s)
Citrus/microbiología , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Fungicidas Industriales/farmacología , Myrtus/química , Penicillium/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Extractos Vegetales/farmacología , Conservación de Alimentos/instrumentación , Conservantes de Alimentos/química , Almacenamiento de Alimentos , Frutas/microbiología , Penicillium/clasificación , Penicillium/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Extractos Vegetales/química , Hojas de la Planta/química
4.
Cells ; 9(12)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255167

RESUMEN

Natural cosmetic products have recently re-emerged as a novel tool able to counteract skin aging and skin related damages. In addition, recently achieved progress in nanomedicine opens a novel approach yielding from combination of modern nanotechnology with traditional treatment for innovative pharmacotherapeutics. In the present study, we investigated the antiaging effect of a pretreatment with Myrtus communis natural extract combined with a polycaprolactone nanofibrous scaffold (NanoPCL-M) on skin cell populations exposed to UV. We set up a novel model of skin on a bioreactor mimicking a crosstalk between keratinocytes, stem cells and fibroblasts, as in skin. Beta-galactosidase assay, indicating the amount of senescent cells, and viability assay, revealed that fibroblasts and stem cells pretreated with NanoPCL-M and then exposed to UV are superimposable to control cells, untreated and unexposed to UV damage. On the other hand, cells only exposed to UV stress, without NanoPCL-M pretreatment, exhibited a significantly higher yield of senescent elements. Keratinocyte-based 3D structures appeared disjointed after UV-stress, as compared to NanoPCL-M pretreated samples. Gene expression analysis performed on different senescence associated genes, revealed the activation of a molecular program of rejuvenation in stem cells pretreated with NanoPCL-M and then exposed to UV. Altogether, our results highlight a future translational application of NanoPCL-M to prevent skin aging.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Nanofibras/química , Extractos Vegetales/farmacología , Piel/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Myrtus/química , Poliésteres/química , Envejecimiento de la Piel/efectos de los fármacos , Células Madre/efectos de los fármacos , Rayos Ultravioleta/efectos adversos
5.
Sci Rep ; 10(1): 14184, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843707

RESUMEN

Pomace seed extract loaded vesicles were prepared as promising technological and green solution to exploit agri-food wastes and by-products, and develop high value-added products for human health. An antioxidant extract rich in bioactive compounds (epicatechins, catechin, gallic acid, quercetin and procynidins) was obtained from the seeds isolated from the pomace of Cannonau red grape cultivar. The extract was incorporated into phospholipid vesicles ad hoc formulated for intestinal delivery, by combining them, for the first time, whit a maltodextrin (Glucidex). Glucidex-transfersomes, glucidex-hyalurosomes and glucidex-hyalutransferomes were prepared, characterized and tested. Glucidex-liposomes were used as reference. All vesicles were small in size (~ 150 nm), homogeneously dispersed and negatively charged. Glucidex-transfersomes and especially glucidex-hyalutransfersomes disclosed an unexpected resistance to acidic pH and high ionic strength, as they maintained their physico-chemical properties (size and size distribution) after dilution at pH 1.2 simulating the harsh gastric conditions. Vesicles were highly biocompatible and able to counteract the oxidative damages induced in Caco-2 cells by using hydrogen peroxide. Moreover, they promoted the formation of Lactobacillus reuteri biofilm acting as prebiotic formulation. Overall results suggest the potential of glucidex-hyalutransfersomes as food supplements for the treatment of intestinal disorders.


Asunto(s)
Antioxidantes/aislamiento & purificación , Tecnología Química Verde/métodos , Limosilactobacillus reuteri , Nanoestructuras , Extractos Vegetales/química , Prebióticos , Reciclaje , Semillas/química , Vitis/química , Residuos , Biopelículas/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/patología , Portadores de Fármacos , Humanos , Ácido Hialurónico , Peróxido de Hidrógeno/toxicidad , Enfermedades Intestinales/prevención & control , Intestinos/efectos de los fármacos , Liposomas , Nanocápsulas , Nanoestructuras/administración & dosificación , Fosfolípidos , Extractos Vegetales/administración & dosificación , Polisacáridos , Polisorbatos , Prebióticos/administración & dosificación
6.
Int J Med Sci ; 17(8): 1030-1042, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410832

RESUMEN

Wound-healing is a dynamic skin reparative process that results in a sequence of events, including inflammation, proliferation, and migration of different cell types as fibroblasts. Fibroblasts play a crucial role in repairing processes, from the late inflammatory phase until the fully final epithelization of the injured tissue. Within this context, identifying tools able to implement cell proliferation and migration could improve tissue regeneration. Recently, plants species from all over the world are coming out as novel tools for therapeutic applications thanks to their phytochemicals, which have antioxidant properties and can promote wound healing. In this paper, we aimed at investigating antioxidant activity of waste extracts from different medicinal plants, endemic of the Mediterranean area, on fibroblast proliferation and wound healing. We determined the amount of total phenols and anti-oxidant activity by ABTS assay. We then evaluated the cytotoxicity of the compounds and the proliferative capabilities of fibroblasts by scratch assay. Our results showed that waste extracts retain antioxidant and regenerative properties, inducing tissue re-establishment after environmental stress exposure. Taken together, our findings suggest that waste material could be used in the future also in combinations to stimulate wound healing processes and antioxidant responses in damaged skin.


Asunto(s)
Antioxidantes/farmacología , Fibroblastos/efectos de los fármacos , Fitoquímicos/farmacología , Plantas Medicinales/química , Repitelización/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Fibroblastos/fisiología , Humanos , Italia , Extractos Vegetales/aislamiento & purificación , Repitelización/fisiología , Piel/citología , Tecnología Farmacéutica , Residuos
7.
Biomed Res Int ; 2019: 5641034, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309107

RESUMEN

Nutraceuticals present in food are molecules able to exert biological activity for the prevention and treatment of various diseases, in form of pharmaceutical preparations, such as capsules, cream, or pills. Myrtus communis L. is a spontaneous Mediterranean evergreen shrub, widely known for the liqueur obtained from its berries rich in phytochemicals such as tannins and flavonoids. In the present study, we aimed to evaluate the properties of myrtle byproducts, residual of the industrial liqueur processing, in Adipose-derived stem cells (ADSCs) induced at oxidative stress by in vitro H2O2 treatment. Cells were exposed for 12-24 and 48h at treatment with extracts and then senescence-induced. ROS production was then determined. The real-time PCR was performed to evaluate the expression of inflammatory cytokines and sirtuin-dependent epigenetic changes, as well the modifications in terms of stem cell pluripotency. The ß-galactosidase assay was conducted to analyze stem cell senescence after treatment. Our results show that industrial myrtle byproducts retain a high antioxidant and antisenescence activity, protecting cells from oxidative stress damages. The results obtained suggest that residues from myrtle liqueur production could be used as resource in formulation of food supplements or pharmaceutical preparations with antioxidant, antiaging, and anti-inflammatory activity.


Asunto(s)
Myrtus/química , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Células Madre/efectos de los fármacos , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Citocinas/metabolismo , Femenino , Flavonoides/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo , Taninos/farmacología , beta-Galactosidasa/metabolismo
8.
Int J Pharm ; 506(1-2): 449-57, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27084291

RESUMEN

The components of pompia, a hybrid Citrus species cultivated only in Sardinia (Italy), were extracted using an environmentally-friendly method and food-grade solvents. Taking into account that only few data are available on pompia composition, the phytochemical fingerprint of its rind extract was obtained by accurate component separation and identification, combining HPLC and mass spectrometry. Different flavones such as naringin (23.77µg/mg), neoeriocitrin (46.53µg/mg) and neohesperidin (44.57µg/mg) were identified. Additionally, the antioxidant activity and phenolic content were confirmed by DPPH and Folin-Ciocalteu assays. The whole extract was incorporated in innovative phospholipid vesicles, namely glycerosomes, hyalurosomes and glycerol containing hyalurosomes, which were prepared using a high ratio of extract/phospholipid (1/3.5w/w). The in vitro biocompatibility of the nanoincorporated extract and its ability to potentiate the aptitude of the extract to counteract oxidative stress in skin cells were evaluated. The vesicles, especially glycerol containing hyalurosomes, were able to prevent oxidative damage and death of both keratinocytes and fibroblasts, promoting their viability.


Asunto(s)
Citrus/química , Sistemas de Liberación de Medicamentos , Fosfolípidos/química , Extractos Vegetales/administración & dosificación , Células 3T3 , Administración Cutánea , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Química Farmacéutica/métodos , Cromatografía Líquida de Alta Presión , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Italia , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Espectrometría de Masas , Ratones , Estrés Oxidativo/efectos de los fármacos , Fenoles/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología
9.
J Agric Food Chem ; 60(30): 7345-51, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22769561

RESUMEN

New pesticides based on plant extracts have recently gained interest in the development of nontoxic crop protection chemicals. Numerous research studies are focused on the isolation and identification of new active compounds derived from plants. In this manuscript we report about the use of the Mediterranean species Capparis spinosa as a potent natural nematicidal agent against the root knot nematodes Meloidogyne incognita. Leaves, stems, and caper buds of Capparis spinosa were used to obtain their methanol extracts (LME, SME, BME) that were successively in vitro tested against second stage nematode juveniles (J2). In terms of paralysis induction, the methanol extract of the stem part (SME) was found more effective against M. incognita and then the caper methanol buds and leaves extracts. The chemical composition analysis of the extracts carried out by GC/MS and LC/MS techniques showed that methylisothiocyanate was the main compound of SME. The EC50 for SME after 3 days of immersion was 215 ± 36 mg/L. The constituent components of SME such as 2-thiophenecarboxaldehyde and methylisothiocyanate were successively in vitro tested for their nematicidal activity against J2. Both compounds induced paralysis on root knot nematodes ranking first (EC50 = 7.9 ± 1.6, and 14.1 ± 1.9 mg/L respectively) for M. incognita. Moreover, 2-thiophenecarboxaldehyde showed a strong fumigant activity.


Asunto(s)
Aldehídos/farmacología , Antinematodos/farmacología , Capparis/química , Isotiocianatos/farmacología , Tiofenos/farmacología , Tylenchoidea/efectos de los fármacos , Aldehídos/química , Animales , Antinematodos/química , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Isotiocianatos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tiofenos/química
10.
J Environ Sci Health B ; 46(6): 544-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21726154

RESUMEN

Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate) was applied with three different formulations on oranges, peaches, tomatoes, wine and table grapes, and its behaviour was evaluated after field treatment. The formulations applied were emulsifiable concentrates (EC), microencapsulates (ME), and wettable granules (WG). The residues were similar in all crops studied in the EC and WG experiments, except peaches with WG treatment, the residue amount was lower than EC values. Tomatoes which were grown in greenhouse showed similar residues in all treatments just after treatment. Wine and table grapes showed different decline curves in the EC experiments ascribable to the different growing technology. Instrumental limit of determination (LOD) and limit of quantification (LOQ) for all matrices were 0.01, and 0.03 mg kg⁻¹, respectively. Repeated treatments showed that Chlorpyrifos can accumulate leading to residue levels at the preharvest interval (PHI) over the maximum residue level (MRL), especially on oranges and peaches. Among the formulates used ME showed the higher risk of residues over the MRL at harvest.


Asunto(s)
Cloropirifos/análisis , Contaminación de Alimentos/análisis , Insecticidas/análisis , Residuos de Plaguicidas/análisis , Biodegradación Ambiental , Cromatografía de Gases , Citrus sinensis/química , Solanum lycopersicum/química , Prunus/química , Vitis/química , Vino/análisis
11.
J Environ Sci Health B ; 45(6): 493-500, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20574869

RESUMEN

Dissipation rates of boscalid [2-chloro-N-(4' -chlorobiphenyl-2-yl)nicotinamide], pyraclostrobin [methyl 2-[1-(4-chlorophenyl) pyrazol-3-yloxymethyl]-N-methoxycarbanilate], lufenuron [(RS)-1-[2,5-dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]-3-(2,6-difluorobenzoyl)urea] and lambda-cyhalothrin [(R)-cyano(3-phenoxyphenyl)methyl (1S,3S)-rel-3-[(1Z)-2-chloro-3,3,3-trifluoro-1-propenyl]-2,2-dimethylcyclopropanecarboxylate] in green beans and spring onions under Egyptian field conditions were studied. Field trials were carried out in 2008 in a Blue Nile farm, located at 70 kilometer (km) from Cairo (Egypt). The pesticides were sprayed at the recommended rate and samples were collected at pre-determined intervals. After treatment (T(0)) the pesticide residues in green beans were 7 times lower than in spring onions. This is due to a different structure of vegetable plant in the two crops. In spring onions, half-life (t(1/2)) of pyraclostrobin and lufenuron was 3.1 days and 9.8 days respectively. At day 14th (T(14)) after treatment boscalid residues were below the Maximum Residue Limit (MRL) (0.34 versus 0.5 mg/kg), pyraclostrobin and lambda -cyhalothrin residues were not detectable (ND), while lufenuron residues were above the MRL (0.06 versus 0.02 mg/kg). In green beans, at T(0), levels of boscalid, lufenuron and lambda -cyhalothrin were below the MRL (0.28 versus 2 mg/kg; ND versus 0.02 mg/kg; 0.06 versus 0.2 mg/kg, respectively) while, after 7 days treatment (T(7)) pyraclostrobin residues were above the MRL (0.03 versus 0.02 mg/kg). However, after 14 days the residue level could go below the MRL (0.02 mg/kg), as observed in spring onions.


Asunto(s)
Benzamidas/análisis , Compuestos de Bifenilo/análisis , Fabaceae/química , Niacinamida/análogos & derivados , Nitrilos/análisis , Cebollas/química , Residuos de Plaguicidas/análisis , Piretrinas/análisis , Carbamatos , Contaminación de Alimentos/análisis , Semivida , Niacinamida/análisis , Pirazoles , Estrobilurinas
12.
J Environ Sci Health B ; 44(6): 598-605, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20183068

RESUMEN

The degradation of the main azadirachtoids on tomatoes was studied after greenhouse treatment. These experiments were carried out at 1 and 5x the concentration recommended by the manufacturer. In all experiments the deposition of azadirachtin A (AZA-A) was below the maximum residue level (MRL). Even if at the highest dose, AZA-A half-life time calculated as pseudo first order kinetic was 1.2 days in agreement with the recommended preharvest interval (PHI) of 3 days. Experiments with a model system showed that sunlight photodegradation is the main factor influencing the rate of disappearance of AZA-A after greenhouse treatment while tomato epicuticular waxes doubled the photodegradation rate of AZA-A in a commercial formulation.


Asunto(s)
Insecticidas/metabolismo , Insecticidas/efectos de la radiación , Limoninas/efectos de la radiación , Fotólisis/efectos de la radiación , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de la radiación , Luz Solar , Cromatografía Líquida de Alta Presión , Tecnología de Alimentos , Semivida , Cinética , Limoneno , Limoninas/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Triterpenos/metabolismo , Triterpenos/efectos de la radiación
13.
J Agric Food Chem ; 54(26): 10026-32, 2006 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-17177537

RESUMEN

Azadirachtoids were determined by liquid chromatography/mass spectrometry (LC/MS) in five methanolic seed extracts of the neem tree and in a commercial formulation. On average, seed extracts contain azadirachtin A (10.9%), azadirachtin B (3.5%), nimbin (10.4%), and large quantities of salannin (19.0%). The composition of the commercial formulations may present different azadirachtoids contents depending on the natural extracts used in the preparation. Because these compounds may also show insecticide activity, the efficacy on field of these formulations may be very different. Photodegradation of pure azadirachtoids was also studied. Azadirachtins and related compounds are very sensitive to sunlight, degrading rapidly, with half-lives of the order of 11.3 h for azadirachtin A and 5.5 h for azadirachtin B and few minutes for the other limonoids compounds studied. The residues of azadirachtins and the main constituents, e.g., salannin, nimbin, deacetylnimbin, and deacetylsalannin, of the neem seed extract were determined on strawberries after field treatment using two different formulations. This residue study on strawberry was carried out to assess not only the azadirachtin content but also the main azadirachtoids contents. Three days after field application at five times the dose recommended by the manufacturer, residues of azadirachtin A and B were 0.03 and 0.01 mg/kg, respectively, while residues of salannin (LOQ 0.01 mg/kg) and nimbin (LOQ 0.5 mg/kg) were not detectable.


Asunto(s)
Azadirachta/química , Fragaria/química , Limoninas/análisis , Frutas/química , Semivida , Limoneno , Limoninas/química , Extractos Vegetales/química , Luz Solar , Triterpenos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA