Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Cosmet Dermatol ; 23(3): 1045-1054, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050657

RESUMEN

OBJECTIVE: The current study aimed to provide preliminary insights into potential biopharmaceutical applications of Carica papaya seed extract by evaluating its phytochemical and biological profiles. Furthermore, the study aimed to develop a stable oil-in-water (O/W) emulsion for the effective delivery of antioxidant-rich biologicals for cosmetic purposes. METHODS: The hydroethanolic (ethanol 80%: 20% water) extract of C. papaya seeds was prepared via maceration technique. The chemical composition was carried out through preliminary phytochemical screening and estimation of total phenolic contents (TPC) and total flavonoid contents (TFC). The biological profile of the extract was explored using various in-vitro antioxidant methods. The homogenization procedure was used to create a cream of O/W and various tests were applied to assess the stability of the emulsion. By keeping the emulsion at different storage conditions (8 ± 0.5°C, 25 ± 0.5°C, 40 ± 0.5°C, and 40 ± 0.5°C ± 75% relative humidity [RH]) for a period of 28 days), the physical stability parameters of the emulsion, including pH, viscosity, centrifugation, phase separation, and conductivity, as well as rheological parameters and organoleptic parameters (odor, color, liquefaction, and creaming), were assessed. RESULTS: The preliminary phytochemical screening assay revealed the presence of various plant secondary metabolites including alkaloids, phenolics, flavonoids, tannins, saponins, and quinones. The extract was found to be rich in TPC and TFC. The in vitro antioxidant study gave maximum activity in the DPPH method. The plant extract containing cosmetic cream exhibited remarkable stability during the entire research. Data gathered indicated that no phase separation or liquefaction was seen after the experimental period. Throughout the experimental period, a small variation in the pH and conductivity values of the base and formulation was seen. CONCLUSION: The findings suggest that the seed extract of C. papaya is a rich source of polyphenols with antioxidant potential and can be a promising alternative for the treatment of various ailments. The stability of emulsion paves the way for its utilization as a carrier for the delivery of 3% C. papaya seed extract and applications in cosmetics products.


Asunto(s)
Productos Biológicos , Carica , Humanos , Antioxidantes , Emulsiones , Emolientes , Flavonoides , Fitoquímicos , Extractos Vegetales/farmacología , Agua
2.
BMC Plant Biol ; 23(1): 648, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38102555

RESUMEN

In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.


Asunto(s)
Brassica napus , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/metabolismo , Brassica napus/metabolismo , Lisina/metabolismo , Hierro/metabolismo , Peróxido de Hidrógeno/metabolismo , Ecosistema , Antioxidantes/metabolismo , Estrés Oxidativo , Suelo/química , Azúcares/metabolismo , Contaminantes del Suelo/metabolismo
3.
Molecules ; 28(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687143

RESUMEN

The traditional use of Mirabilis jalapa L. roots to enhance male sexual performance prompted us to assess the in silico, in vitro, and in vivo aphrodisiac activities of its hydroethanolic extract using normal male rats. Spectroscopic characterization indicated the presence of ß-D-glucopyranoside, methyl-1,9-benzyl-2,6-dichloro-9H-purine, and Bis-(2-ethylhexyl)-phthalate; these compounds have a significant inhibitory effect on the phosphodiesterase-5 (PDE-5) enzyme in silico evaluation and minerals (including zinc, cadmium, and magnesium). Other phytochemical analyses revealed the presence of phenolic compounds and flavonoids. These phytochemicals and minerals may contribute to the aphrodisiac activities of the extract. Additionally, the in vivo study revealed that the administration of M. jalapa root extract (300 mg/kg) significantly enhanced (p < 0.01, p < 0.03) mount, intromission, and ejaculation frequencies while significantly (p < 0.05) decreasing the mount and intromission latencies, as well as the post-ejaculatory interval time, in comparison with the standard drugs sildenafil and ginseng, resulting in enhanced erection and sexual performance in the rats. Furthermore, the extract significantly (p < 0.05) increased penile reflexes and also elevated the levels of testosterone and luteinizing hormones. Extract (300 mg/kg) significantly (p < 0.05) inhibited the PDE-5 enzyme in an in vitro study. Concludingly, the comprehensive findings of this study suggest that a standardized herbal extract derived from M. jalapa roots alleviates erectile dysfunction and premature ejaculation in male rats. M. jalapa root extract proved to be an alternative treatment for erectile dysfunction and premature ejaculation.


Asunto(s)
Afrodisíacos , Disfunción Eréctil , Mirabilis , Eyaculación Prematura , Masculino , Animales , Ratas , Humanos , Afrodisíacos/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología
4.
Cancers (Basel) ; 15(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37627222

RESUMEN

Mangiferin (MGF), a xanthone derived from Mangifera indica L., initially employed as a nutraceutical, is now being explored extensively for its anticancer potential. Scientists across the globe have explored this bioactive for managing a variety of cancers using validated in vitro and in vivo models. The in vitro anticancer potential of this biomolecule on well-established breast cancer cell lines such as MDA-MB-23, BEAS-2B cells and MCF-7 is closer to many approved synthetic anticancer agents. However, the solubility and bioavailability of this xanthone are the main challenges, and its oral bioavailability is reported to be less than 2%, and its aqueous solubility is also 0.111 mg/mL. Nano-drug delivery systems have attempted to deliver the drugs at the desired site at a desired rate in desired amounts. Many researchers have explored various nanotechnology-based approaches to provide effective and safe delivery of mangiferin for cancer therapy. Nanoparticles were used as carriers to encapsulate mangiferin, protecting it from degradation and facilitating its delivery to cancer cells. They have attempted to enhance the bioavailability, safety and efficacy of this very bioactive using drug delivery approaches. The present review focuses on the origin and structure elucidation of mangiferin and its derivatives and the benefits of this bioactive. The review also offers insight into the delivery-related challenges of mangiferin and its applications in nanosized forms against cancer. The use of a relatively new deep-learning approach to solve the pharmacokinetic issues of this bioactive has also been discussed. The review also critically analyzes the future hope for mangiferin as a therapeutic agent for cancer management.

5.
Molecules ; 28(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37110702

RESUMEN

As is well known, plant products have been increasingly utilized in the pharmaceutical industry in recent years. By combining conventional techniques and modern methodology, the future of phytomedicines appears promising. Pogostemon Cablin (patchouli) is an important herb used frequently in the fragrance industries and has various therapeutic benefits. Traditional medicine has long used the essential oil of patchouli (P. cablin) as a flavoring agent recognized by the FDA. This is a gold mine for battling pathogens in China and India. In recent years, this plant has seen a significant surge in use, and approximately 90% of the world's patchouli oil is produced by Indonesia. In traditional therapies, it is used for the treatment of colds, fever, vomiting, headaches, and stomachaches. Patchouli oil is used in curing many diseases and in aromatherapy to treat depression and stress, soothe nerves, regulate appetite, and enhance sexual attraction. More than 140 substances, including alcohols, terpenoids, flavonoids, organic acids, phytosterols, lignins, aldehydes, alkaloids, and glycosides, have been identified in P. cablin. Pachypodol (C18H16O7) is an important bioactive compound found in P. cablin. Pachypodol (C18H16O7) and many other biologically essential chemicals have been separated from the leaves of P. cablin and many other medicinally significant plants using repeated column chromatography on silica gel. Pachypodol's bioactive potential has been shown by a variety of assays and methodologies. It has been found to have a number of biological activities, including anti-inflammatory, antioxidant, anti-mutagenic, antimicrobial, antidepressant, anticancer, antiemetic, antiviral, and cytotoxic ones. The current study, which is based on the currently available scientific literature, intends to close the knowledge gap regarding the pharmacological effects of patchouli essential oil and pachypodol, a key bioactive molecule found in this plant.


Asunto(s)
Aceites Volátiles , Plantas Medicinales , Pogostemon , Quercetina , Aceites Volátiles/farmacología , Aceites Volátiles/química
6.
Polym Bull (Berl) ; 80(6): 6965-6988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35966180

RESUMEN

In this study, an inorganic-organic composite system was developed through biomineralization of calcium carbonate in the quince-seed mucilage-based hydrogel. Drug-polymer interactions were studied by FTIR, DSC, XRD and SEM analysis. The water absorption capacity was calculated by swelling index. Drug release was determined at various pH. Several in vitro kinetic models were applied to observe drug release behaviour. Studies of drug-polymer interactions and particle flow characteristics of the developed composite material have shown that there is good compatibility between drug and the excipients. The XRD and SEM results confirmed calcite polymorphs in the developed composite material. Thermograms showed that the developed composite material was heat stable. A restricted drug release was observed in an acidic medium (pH 1.2). A controlled drug release was depicted from the developed system at pH 6.8. The drug release mechanism of Super Case II was suggested. The developed system was considered to be an effective drug carrier for colon targeted oral delivery of non-steroidal anti-inflammatory drugs (NSAIDs) to avoid gastric irritation and risk of ulceration. Graphical abstract: An illustration of extraction of quince hydrogel and development of calcium carbonate-quince (CaCO3-Q) composite system; QSM = Quince seed mucilage. Supplementary Information: The online version contains supplementary material available at 10.1007/s00289-022-04400-1.

7.
Front Pharmacol ; 12: 708618, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776946

RESUMEN

Sphaeranthus indicus L. is a medicinal herb having widespread traditional uses for treating common ailments. The present research work aims to explore the in-depth phytochemical composition and in vitro reactivity of six different polarity solvents (methanol, n-hexane, benzene, chloroform, ethyl acetate, and n-butanol) extracts/fractions of S. indicus flowers. The phytochemical composition was accomplished by determining total bioactive contents, HPLC-PDA polyphenolic quantification, and UHPLC-MS secondary metabolomics. The reactivity of the phenolic compounds was tested through the following biochemical assays: antioxidant (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation) and enzyme inhibition (AChE, BChE, α-glucosidase, α-amylase, urease, and tyrosinase) assays were performed. The methanol extract showed the highest values for phenolic (94.07 mg GAE/g extract) and flavonoid (78.7 mg QE/g extract) contents and was also the most active for α-glucosidase inhibition as well as radical scavenging and reducing power potential. HPLC-PDA analysis quantified rutin, naringenin, chlorogenic acid, 3-hydroxybenzoic acid, gallic acid, and epicatechin in a significant amount. UHPLC-MS analysis of methanol and ethyl acetate extracts revealed the presence of well-known phytocompounds; most of these were phenolic, flavonoid, and glycoside derivatives. The ethyl acetate fraction exhibited the highest inhibition against tyrosinase and urease, while the n-hexane fraction was most active for α-amylase. Moreover, principal component analysis highlighted the positive correlation between bioactive compounds and the tested extracts. Overall, S. indicus flower extracts were found to contain important phytochemicals, hence could be further explored to discover novel bioactive compounds that could be a valid starting point for future pharmaceutical and nutraceuticals applications.

8.
Food Chem Toxicol ; 155: 112404, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34246708

RESUMEN

Capparis spinose L. also known as Caper is of great significance as a traditional medicinal food plant. The present work was targeted on the determination of chemical composition, pharmacological properties, and in-vitro toxicity of methanol and dichloromethane (DCM) extracts of different parts of C. spinosa. Chemical composition was established by determining total bioactive contents and via UHPLC-MS secondary metabolites profiling. For determination of biological activities, antioxidant capacity was determined through DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelating assays while enzyme inhibition against cholinesterase, tyrosinase, α-amylase and α-glucosidase were also tested. All the extracts were also tested for toxicity against two breast cell lines. The methanolic extracts were found to contain highest total phenolic and flavonoids which is correlated with their significant radical scavenging, cholinesterase, tyrosinase and glucosidase inhibition potential. Whereas DCM extracts showed significant activity for reducing power, phosphomolybdenum, metal chelation, tyrosinase, and α-amylase inhibition activities. The secondary metabolites profiling of both methanolic extracts exposed the presence of 21 different secondary metabolites belonging to glucosinolate, alkaloid, flavonoid, phenol, triterpene, and alkaloid derivatives. The present results tend to validate folklore uses of C. spinose and indicate this plant to be used as a potent source of designing novel bioactive compounds.


Asunto(s)
Capparis/química , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Capparis/toxicidad , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/toxicidad , Humanos , Fitoquímicos/química , Fitoquímicos/toxicidad , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/toxicidad , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Raíces de Plantas/química , Raíces de Plantas/toxicidad , Plantas Medicinales/toxicidad
9.
Food Chem Toxicol ; 154: 112348, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34144099

RESUMEN

Suaeda fruticosa is an edible medicinal halophyte known for its traditional uses. In this study, methanol and dichloromethane extracts of S. fruticosa were explored for phytochemical, biological and toxicological parameters. Total phenolic and flavonoid constituents were determined by using standard aluminum chloride and Folin-Ciocalteu methods, and UHPLC-MS analysis of methanol extract was performed for tentative identification of secondary metabolites. Different standard methods like DPPH, ABTS, FRAP, CUPRAC, total antioxidant capacity (TAC), and metal chelation assays were utilized to find out the antioxidant potential of extracts. Enzyme inhibition studies of extracts against acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase and, α-glucosidase enzymes were also studied. Likewise, the cytotoxicity was also assessed against MCF-7, MDA-MB-231, and DU-145 cell lines. The higher phenolic and flavonoids contents were observed in methanol extracts which can be correlated to its higher radical scavenging potential. Similarly, 11 different secondary metabolites were tentatively identified by UHPLC profiling. Both the extract showed significant inhibition against all the enzymes except for α-glucosidase. Moreover, docking studies were also performed against the tested enzymes. In the case of cytotoxicity, both the samples were found moderately toxic against the tested cell lines. This plant can be explored further for its potential therapeutic and edible uses.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Chenopodiaceae/química , Inhibidores Enzimáticos/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Enzimas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Fitoquímicos/química , Fitoquímicos/metabolismo , Extractos Vegetales/química , Plantas Medicinales/química , Unión Proteica
10.
Food Res Int ; 137: 109606, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33233202

RESUMEN

Calligonum polygonoides L. also known as famine food plant, is normally consumed in times of food scarcity in India and Pakistan and also used traditionally in the management of common diseases. The present design aims to provide an insight into the medicinal potential of four solvent extracts of C. polygonoides via an assessment of its phytochemical profile, antioxidant and enzyme inhibitory potential. Phytochemical composition was estimated by deducing total bioactive constituents, UHPLC-MS secondary metabolites profile, and HPLC phenolic quantification. Antioxidant potential was determined via six methods (radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum total antioxidant capacity and metal chelation activity). Enzyme inhibitory potential was assessed against clinical enzymes (acetylcholinesterase -AChE, butyrylcholinesterase -BChE, tyrosinase, and α-amylase). The highest amounts of phenolic contents were found in chloroform extract (76.59 mg GAE/g extract) which may be attributed to its higher radical scavenging, reducing power and tyrosinase inhibition potential. The n-butanol extract containing the maximum amount of flavonoids (55.84 mg RE/g extract) exhibited highest metal chelating capacity. Similarly, the n-hexane extract was found to be most active against AChE (4.65 mg GALAE/g extract), BChE (6.59 mg GALAE/g extract), and α-amylase (0.70 mmol ACAE/g extract) enzymes. Secondary metabolite assessment of the crude methanol extract as determined by UHPLC-MS analysis revealed the presence of 24 (negative ionization mode) and 15 (positive ionization mode) secondary metabolites, with most of them belonging to phenolic, flavonoids, terpene, and alkaloid groups. Moreover, gallic acid and naringenin were the main phenolics quantified by HPLC-PDA analysis in all the tested extracts (except n-butanol extract). PCA statistical analysis was also conducted to establish any possible relationship amongst bioactive contents and biological activities. Overall, the C. polygonoides extracts could be further considered to isolate bioactive enzyme inhibitory and antioxidant natural phytocompounds.


Asunto(s)
Hambruna , Extractos Vegetales , India , Análisis Multivariante , Pakistán , Fitoquímicos/análisis , Plantas Comestibles
11.
Drug Dev Ind Pharm ; 46(5): 861-868, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32352878

RESUMEN

The biological, chemical, and in silico properties of methanol and dichloromethane (DCM) extracts of Alhagi maurorum roots with respect to the antioxidant, enzyme inhibition, and phytochemical composition were evaluated. Total bioactive contents were determined spectrophotometrically, and the individual secondary metabolites composition was assessed via ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) analysis. Antioxidant capacities were evaluated using a panoply of assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging, ferric reducing antioxidant power (FRAP), cupric reducing antioxidant power (CUPRAC), phosphomolybdenum total antioxidant capacity (TAC), and metal chelating activity (MCA)). The enzyme inhibition potential was studied against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, α-glucosidase, tyrosinase, urease and lipoxygenase (LOX) enzymes. The methanol extract was found to contain higher total phenolic (105.91 mg GAE/g extract) and flavonoid (2.27 mg RE/g extract) contents which can be correlated to its more substantial antioxidant potential as well as AChE, BChE, tyrosinase and α-glucosidase inhibition. However, the DCM extract was the most effective against α-amylase (1.86 mmol ACAE/g extract) enzyme inhibition. The UHPLC-MS analysis of methanol extract identified the tentative presence of a total of 18 secondary metabolites, including flavonoids, saponins, phenolic and terpenoid derivatives. Three compounds named emmotin A, luteolin 5,3'-dimethyl ether, and preferrugone were further investigated for their in silico molecular docking studies against the tested enzymes. The selected compounds were found to have higher binding interaction with AChE followed by BChE, α-glucosidase, α-amylase, and tyrosinase. The results of the present study have demonstrated A. mauroram to be considered as a lead source of natural antioxidant and enzyme inhibitor compounds.


Asunto(s)
Simulación por Computador , Simulación del Acoplamiento Molecular/métodos , Fitoquímicos/análisis , Extractos Vegetales/análisis , Raíces de Plantas , Plantas Medicinales , Cromatografía Líquida de Alta Presión/métodos , Fitoquímicos/química , Extractos Vegetales/química , Espectrometría de Masas en Tándem/métodos
12.
Breast ; 46: 40-47, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31075671

RESUMEN

Multiple social and financial barriers exist to breast cancer detection in Pakistan, which may cause a delay in seeking care and the final diagnosis. This analytical study documents the pathways and time courses associated with referral to diagnostic centres to evaluate the clinical signs and symptoms of breast cancer. This report also verifies the association between socio-demographic and clinical indicators concerning the length of time spent before reaching diagnostic facilities. A purposive sample of 200 patients was selected from two tertiary care hospitals in Lahore, Pakistan, for the interviews. Descriptive statistics (that is, percentages, frequencies, and measures of central tendencies) and a multiple linear regression model were used to achieve the study objectives. The descriptive model showed 31-128 days interval between a patient's awareness of a clinical sign or symptom and receiving care. The healthcare system, including traditional healers, took from 7 to 194 days, and the time to diagnosis ranged from 15 to 30 days. Pain severity, larger tumour size, lack of clinical improvement, and the desire to obtain better treatment were reasons given for seeking care, but lack of awareness and fear of financial burden related to accessing healthcare facilities were identified as barriers. Moreover, socio-demographic and other predictive clinical factors were potentially associated with and substantially influenced the likelihood of the increased length of breast cancer patients' time to reach diagnostic centres. In conclusion, referrals by multiple healthcare providers, especially traditional healers and general practitioners, was a significant predictor for delay in diagnosis. Therefore, increased awareness and a responsive healthcare system may reduce the time from the recognition of symptoms to the early detection of breast cancer among women, thus improving outcomes in a developing country.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Medicina General/estadística & datos numéricos , Conocimientos, Actitudes y Práctica en Salud , Medicina Tradicional/estadística & datos numéricos , Aceptación de la Atención de Salud/estadística & datos numéricos , Adulto , Factores de Edad , Anciano , Neoplasias de la Mama/psicología , Diagnóstico Tardío , Empleo , Femenino , Humanos , Modelos Lineales , Persona de Mediana Edad , Pakistán , Aceptación de la Atención de Salud/psicología , Evaluación de Síntomas/psicología , Evaluación de Síntomas/estadística & datos numéricos , Factores de Tiempo , Adulto Joven
13.
J Environ Manage ; 210: 114-121, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29331852

RESUMEN

Modern food processing results in considerable amounts of side-products, such as grape seeds, walnut shells, spent coffee grounds, and harvested tomato plants. These materials are still rich in valuable and biologically active substances and therefore of interest from the perspective of waste management and "up-cycling". In contrast to traditional, often time consuming and low-value uses, such as vermicomposting and anaerobic digestion, the complete conversion into nanosuspensions unlocks considerable potentials of and new applications for such already spent organic materials without the need of extraction and without producing any additional waste. In this study, nanosuspensions were produced using a sequence of milling and homogenization methods, including High Speed Stirring (HSS) and High Pressure Homogenization (HPH) which reduced the size of the particles to 200-400 nm. The resulting nanosuspensions demonstrated nematicidal and antimicrobial activity and their antioxidant activities exceeded the ones of the bulk materials. In the future, this simple nanosizing approach may fulfil several important objectives, such as reducing and turning readily available waste into new value and eventually closing a crucial cycle of agricultural products returning to their fields - with a resounding ecological impact in the fields of medicine, agriculture, cosmetics and fermentation. Moreover, up-cycling via nanosizing adds an economical promise of increased value to residue-free waste management.


Asunto(s)
Manipulación de Alimentos , Nanotecnología , Administración de Residuos , Agricultura , Café , Fermentación
14.
Acta Pol Pharm ; 72(3): 607-14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26642669

RESUMEN

The aim of the work was to examine the influence of gender on pharmacokinetics of silymarin; a basic constituent of medicinal herb "milk thistle" (Silybum marianum). The presented work is the extension of published work of Usman et al. (16). The comparative parallel design pharmacokinetic study was conducted in Pakistani healthy volunteers (male and female) receiving a single 200 mg oral dose of silymarin. Sixteen subjects (8 males and 8 females) were enrolled and completed the 12 h study. Blood screening was done on HPLC and the pharmacokinetic parameters were calculated by APO, 3.2 Ver. software using non-compartmental and two compartment model approaches. A significant difference (p < 0.05) was observed in almost all calculated pharmacokinetic parameters of silymarin in male and female. Clinically, the silymarin has been underestimated in the previous study. Gender based clinical investigations should be directed in the future on other flavono-lignans of 'milk thistle' as well.


Asunto(s)
Silimarina/farmacocinética , Adolescente , Adulto , Área Bajo la Curva , Femenino , Humanos , Masculino , Persona de Mediana Edad , Silybum marianum , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA