Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 343: 123246, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38158012

RESUMEN

This study reports size-resolved dithiothreitol (DTT)-based oxidative potential (OP: total and water-soluble) in rural kitchens using liquefied petroleum gas (LPG), firewood (FW), and mixed biomass (MB) fuels in northeastern (NE) India. In comparison to LPG, volume-normalized total OP (OPtotal(v)DTT) was enhanced by a factor of ∼5 in biomass-using kitchens (74 ± 35 to 78 ± 42 nmol min-1 m-3); however, mass-normalized total OP (OPtotal(m)DTT) was similar between LPG and FW users and higher by a factor of 2 in MB-using kitchens. The water-insoluble OP (OPwi(v, m)DTT) fraction in OPtotal(v, m)DTT was greater than 50% across kitchens. Size distributions across kitchens and OPDTT categories ranged from unimodal to trimodal. OPws(v)DTT was driven by metals as well as organics across size fractions while OPwi(v)DTT was majorly constrained by metals with an increasing importance of organics in fine particles of biomass-using kitchens. Multiple linear regression analysis revealed that Cu and Ba explained 71% of the OPtotal(v)DTT variability in LPG-using kitchens, while water-soluble organic carbon (WSOC) and Ba were responsible for 44% variability in FW-using kitchens. Finally, the high internal dose of OPtotal(v)DTT (28-31 nmol min-1 m-3) in biomass-using kitchens established the severity of oxidative stress on the exposed population.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Petróleo , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , India , Aerosoles , Estrés Oxidativo , Ditiotreitol , Agua , Monitoreo del Ambiente , Contaminación del Aire Interior/análisis
2.
Sci Total Environ ; 905: 167163, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730065

RESUMEN

Exposure to a total of 51 targeted and non-targeted polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and alkylated derivatives associated with size-segregated aerosol was investigated in rural kitchens using liquefied petroleum gas (LPG), mixed biomass (MB) and firewood (FW) fuels in northeastern India. The averaged PM10-associated parent-, alkylated-, and oxygenated-PAHs concentrations increased notably from LPG (257, 54, and 116 ng m-3) to MB (838, 119, and 272 ng m-3) to FW-using kitchens (2762, 225, and 554 ng m-3), respectively. PAHs were preferentially associated with the PM1 fraction with contributions increasing from 80 % in LPG to 86 % in MB and 90 % in FW-using kitchens, which in turn was dominated by <0.25 µm particles (54-75 % of the total). A clear profile of enrichment of low-molecular weight PAHs in cleaner fuels (LPG) and a contrasting enrichment of high-molecular weight PAHs in biomass-based fuels was noted. The averaged internal dose of Benzo[a]pyrene equivalent was the lowest in the case of LPG (19 ng m-3), followed by MB (161 ng m-3) and the highest in FW users (782 ng m-3). Estimation of incremental lifetime cancer risk (ILCR) from PAH exposure revealed extremely high cancer risk in biomass users (factors of 8-40) compared to LPG. The potential years of life lost (PYLL) and PYLL rate averaged across kitchen categories was higher for lung cancer (PYLL: 10.55 ± 1.04 years; PYLL rate: 204 ± 426) compared to upper respiratory tract cancer (PYLL: 10.02 ± 0.05 years; PYLL rate: 4 ± 7), and the PYLL rates for biomass users were higher by factors of 9-56 as compared to LPG users. These findings stress the need for accelerated governmental intervention to ensure a quick transition from traditional biomass-based fuels to cleaner alternatives for the rural population of northeastern India.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Neoplasias Pulmonares , Petróleo , Hidrocarburos Policíclicos Aromáticos , Humanos , Población Rural , Contaminación del Aire Interior/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Culinaria , India , Costo de Enfermedad , Material Particulado/análisis , Contaminantes Atmosféricos/análisis
3.
ACS Appl Mater Interfaces ; 15(23): 28453-28464, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37266923

RESUMEN

Here, we report the design and synthesis of a redox-active multifunctional ionic porous organic polymer iPOP-Bpy with exchangeable Br- ions, incorporating viologen as a redox-active building block. The material shows not only excellent iodine uptake capacity in the vapor phase (540 wt %) but also in the organic (1009.77 mg g-1) and aqueous phases (3921.47 mg g-1) with very fast adsorption kinetics in all cases. The material also shows its utility in being used as a solid-state NH3 vapor sensor as it shows very fast color switching in the presence of NH3 vapor. Furthermore, the material found application as a p-type complementary electrochromic electrode and was fabricated into a bilayer device. Excellent coloration efficiency, high switching speed, and good color contrast were obtained as investigated using bias-dependent optical and spectroelectrochemical studies, paving the way for fabricating power-efficient solid-state electrochromic devices.

4.
Sci Total Environ ; 875: 162539, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871731

RESUMEN

Mass-size distribution of respirable aerosol and 13 associated trace elements (TEs) were investigated in rural kitchens using liquefied petroleum gas (LPG), firewood and mixed biomass fuels across three northeastern Indian states. The averaged PM10 (particulate matter with aerodynamic diameter ≤ 10 µm) and ΣTE concentrations were 403 and 30 µg m-3 for LPG, 2429 and 55 µg m-3 for firewood, and 1024 and 44 µg m-3 for mixed biomass-using kitchens. Mass-size distributions were tri-modal with peaks in the ultrafine (0.05-0.08 µm), accumulation (0.20-1.05 µm), and coarse (3.20-4.57 µm) modes. Respiratory deposition, estimated using the multiple path particle dosimetry model, ranged from 21 % to 58 % of the total concentration across fuel types and population age categories. Head, followed by pulmonary and tracheobronchial, was the most vulnerable deposition region, and children were the most susceptible age group. Inhalation risk assessment of TEs revealed significant non-carcinogenic as well as carcinogenic risk, especially for biomass fuel users. The potential years of life lost (PYLL) was the highest for chronic obstructive pulmonary disease (COPD: 15.9 ± 3.8 years) followed by lung cancer (10.3 ± 0.3 years) and pneumonia (10.1 ± 0.1 years), while the PYLL rate was also highest for COPD, with Cr(VI) being the major contributor. Overall, these findings reveal the significant health burden faced by the northeastern Indian population from indoor cooking using solid biomass fuels.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Petróleo , Enfermedad Pulmonar Obstructiva Crónica , Oligoelementos , Niño , Humanos , Monitoreo del Ambiente , Aerosoles y Gotitas Respiratorias , Material Particulado/análisis , Culinaria , India , Contaminación del Aire Interior/análisis , Costo de Enfermedad , Contaminantes Atmosféricos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA