Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Amino Acids ; 56(1): 23, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506925

RESUMEN

Oxidative stress can affect the protein, lipids, and DNA of the cells and thus, play a crucial role in several pathophysiological conditions. It has already been established that oxidative stress has a close association with inflammation via nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. Amino acids are notably the building block of proteins and constitute the major class of nitrogen-containing natural products of medicinal importance. They exhibit a broad spectrum of biological activities, including the ability to activate NRF2, a transcription factor that regulates endogenous antioxidant responses. Moreover, amino acids may act as synergistic antioxidants as part of our dietary supplementations. This has aroused research interest in the NRF2-inducing activity of amino acids. Interestingly, amino acids' activation of NRF2-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway exerts therapeutic effects in several diseases. Therefore, the present review will discuss the relationship between different amino acids and activation of NRF2-KEAP1 signaling pathway pinning their anti-inflammatory and antioxidant properties. We also discussed amino acids formulations and their applications as therapeutics. This will broaden the prospect of the therapeutic applications of amino acids in a myriad of inflammation and oxidative stress-related diseases. This will provide an insight for designing and developing new chemical entities as NRF2 activators.


Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Humanos , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Aminoácidos/metabolismo , Estrés Oxidativo , Inflamación/tratamiento farmacológico
2.
Biomedicines ; 11(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36979697

RESUMEN

Angiogenesis is a physiological process that consists of the formation of new blood vessels from preexisting ones. Angiogenesis helps in growth, development, and wound healing through the formation of granulation tissue. However, this physiological process has also been linked to tumor growth and metastasis formation. Indeed, angiogenesis has to be considered as a fundamental step to the evolution of benign tumors into malignant neoplasms. The main mediator of angiogenesis is vascular endothelial growth factor (VEGF), which is overexpressed in certain cancers. Thus, there are anti-VEGF monoclonal antibodies, such as bevacizumab, used as anti-cancer therapies. However, bevacizumab has shown adverse events, such as hypertension and proteinuria, which in the most severe cases can lead to cessation of therapy, thus contributing to worsening patients' prognosis. On the other hand, endostatin is an endogenous protein that strongly inhibits VEGF expression and angiogenesis and shows a better safety profile. Moreover, endostatin has already given promising results on small scale clinical studies. Hence, in this review, we present data supporting the use of endostatin as a replacement for anti-VEGF monoclonal antibodies.

3.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36830015

RESUMEN

Breast cancer is the most frequent malignant neoplastic disease in women, with an estimated 2.3 million cases in 2020 worldwide. Its treatment depends on characteristics of the patient and the tumor. In the latter, characteristics include cell type and morphology, anatomical location, and immunophenotype. Concerning this latter aspect, the overexpression of the HER2 receptor, expressed in 15-25% of tumors, is associated with greater aggressiveness and worse prognosis. In recent times some monoclonal antibodies have been developed in order to target HER2 receptor overexpression. Trastuzumab is part of the monoclonal antibodies used as targeted therapy against HER2 receptor, whose major problem is its cardiac safety profile, where it has been associated with cardiotoxicity. The appearance of cardiotoxicity is an indication to stop therapy. Although the pathophysiological mechanism is poorly known, evidence indicates that oxidative stress plays a fundamental role causing DNA damage, increased cytosolic and mitochondrial ROS production, changes in mitochondrial membrane potential, intracellular calcium dysregulation, and the consequent cell death through different pathways. The aim of this review was to explore the use of antioxidants as adjuvant therapy to trastuzumab to prevent its cardiac toxicity, thus leading to ameliorate its safety profile in its administration.

4.
Phytother Res ; 37(4): 1590-1605, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36752350

RESUMEN

Usually, in aerobic metabolism, natural materials including nucleic acids, proteins, and lipids can experience auxiliary injury by oxidative responses. This damage produced by reactive oxygen/nitrogen species has been identified as "oxidative stress." As a natural polyphenol got from red wine and peanuts, resveratrol is one of the most eminent anti-aging mixtures. Based on many studies', resveratrol hinders destructive effects of inflammatory causes and reactive oxygen radicals in several tissues. The nuclear erythroid 2-related factor 2 is a factor related to transcription with anti-inflammatory, antioxidant possessions which is complicated by enzyme biotransformation and biosynthesis of lipids and carbohydrates. This review provides current understanding and information about the character of resveratrol against oxidative stress and regulation of inflammation via Nrf2 signaling pathway.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Humanos , Resveratrol/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Inflamación/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Especies de Nitrógeno Reactivo , Lípidos
5.
Biomedicines ; 10(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551843

RESUMEN

Septic shock currently represents one of the main causes of mortality in critical patient units with an increase in its incidence in recent years, and it is also associated with a high burden of morbidity in surviving patients. Within the pathogenesis of sepsis, oxidative stress plays an important role. The excessive formation of reactive oxygen species (ROS) leads to mitochondrial damage and vasomotor dysfunction that characterizes those patients who fall into septic shock. Currently, despite numerous studies carried out in patients with septic shock of different causes, effective therapies have not yet been developed to reduce the morbidity and mortality associated with this pathology. Despite the contribution of ROS in the pathophysiology of sepsis and septic shock, most studies performed in humans, with antioxidant monotherapies, have not resulted in promising data. Nevertheless, some interventions with compounds such as ascorbate, N-acetylcysteine, and selenium would have a positive effect in reducing the morbidity and mortality associated with this pathology. However, more studies are required to demonstrate the efficacy of these therapies. Taking into account the multifactorial features of the pathophysiology of sepsis, we put forward the hypothesis that a supplementation based on the association of more than one antioxidant compound should result in a synergistic or additive effect, thus improving the beneficial effects of each of them alone, potentially serving as a pharmacological adjunct resource to standard therapy to reduce sepsis complications. Therefore, in this review, it is proposed that the use of combined antioxidant therapies could lead to a better clinical outcome of patients with sepsis or septic shock, given the relevance of oxidative stress in the pathogenesis of this multi-organ dysfunction.

6.
Molecules ; 27(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36014466

RESUMEN

Euphorbia resinifera latex has been extensively utilized in traditional medicine due to its range of bioactivities. Chromatographic separations on silica gel of ethanol extract of E. resinifera latex led to the development of a new procedure for isolating resiniferatoxin (4) via dried E. resinifera latex and the identification of nine compounds. Among these, catechol (7), protocatechuic acid (8) and 3,4-dihydroxyphenylacetic acid (9), known phenolic compounds, were identified for the first time in E. resinifera latex. Herein we investigated the effects of major compounds of the latex of E. resinifera on the yeast Saccharomyces cerevisiae, on the growth of Aspergillus carbonarius, a widespread fungal contaminant, and on the breast cancer cell line MCF7 as well as on MCF10A normal breast cells. 12-deoxyphorbol-13-isobutyrate-20-acetate (2) had an inhibiting effect on the growth of A. carbonarius, and 7-p-metoxyphenylacetate-3,8,12-triacetate ingol (3) showed a negative effect on yeast cell growth and also a cytotoxic effect on breast cancer cell line MCF7, but not on MCF10A cells. Deglucosyl euphorbioside A (5) and euphorbioside A (6) showed a discoloration effect that was possibly related to mitochondrial functionality in yeast, and also cytotoxicity only on the cancer cell line that was tested. Interestingly, treatment of MCF7 cells with 7-p-metoxyphenylacetate-3,8,12-triacetate ingol (3) and deglucosyl euphorbioside A (5) not only led to a specific cytotoxic effect but also to the increase in the level of intracellular ROS.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Diterpenos , Euphorbia , Antifúngicos , Antineoplásicos/farmacología , Diterpenos/química , Euphorbia/química , Femenino , Humanos , Látex/química , Saccharomyces cerevisiae
7.
Molecules ; 27(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35807304

RESUMEN

Diabetes mellitus is a multifactorial chronic metabolic disorder, characterized by altered metabolism of macro-nutrients, such as fats, proteins, and carbohydrates. Diabetic retinopathy, diabetic cardiomyopathy, diabetic encephalopathy, diabetic periodontitis, and diabetic nephropathy are the prominent complications of diabetes. Inflammatory mediators are primarily responsible for these complications. Curcumin, a polyphenol derived from turmeric, is well known for its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. The regulation of several signaling pathways effectively targets inflammatory mediators in diabetes. Curcumin's anti-inflammatory and anti-oxidative activities against a wide range of molecular targets have been shown to have therapeutic potential for a variety of chronic inflammatory disorders, including diabetes. Curcumin's biological examination has shown that it is a powerful anti-oxidant that stops cells from growing by releasing active free thiol groups at the target location. Curcumin is a powerful anti-inflammatory agent that targets inflammatory mediators in diabetes, and its resistant form leads to better therapeutic outcomes in diabetes complications. Moreover, Curcumin is an anti-oxidant and NF-B inhibitor that may be useful in treating diabetes. Curcumin has been shown to inhibit diabetes-related enzymes, such as a-glucosidase, aldose reductase and aldose reductase inhibitors. Through its anti-oxidant and anti-inflammatory effects, and its suppression of vascular endothelial development and nuclear transcription factors, curcumin has the ability to prevent, or reduce, the course of diabetic retinopathy. Curcumin improves insulin sensitivity by suppressing phosphorylation of ERK/JNK in HG-induced insulin-resistant cells and strengthening the PI3K-AKT-GSK3B signaling pathway. In the present article, we aimed to discuss the anti-inflammatory mechanisms of curcumin in diabetes regulated by various molecular signaling pathways.


Asunto(s)
Curcumina , Diabetes Mellitus , Nefropatías Diabéticas , Aldehído Reductasa , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes , Curcumina/farmacología , Curcumina/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Humanos , Mediadores de Inflamación/metabolismo , Fosfatidilinositol 3-Quinasas
8.
Molecules ; 27(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35744943

RESUMEN

Cancer is a disease of high mortality, and its prevalence has increased steadily in the last few years. However, during the last decade, the development of modern chemotherapy schemes, new radiotherapy techniques, targeted therapies and immunotherapy has brought new hope in the treatment of these diseases. Unfortunately, cancer therapies are also associated with frequent and, sometimes, severe adverse events. Ascorbate (ascorbic acid or vitamin C) is a potent water-soluble antioxidant that is produced in most mammals but is not synthesised endogenously in humans, which lack enzymes for its synthesis. Ascorbate has antioxidant effects that correspond closely to the dose administered. Interestingly, this natural antioxidant induces oxidative stress when given intravenously at a high dose, a paradoxical effect due to its interactions with iron. Importantly, this deleterious property of ascorbate can result in increased cell death. Although, historically, ascorbate has been reported to exhibit anti-tumour properties, this effect has been questioned due to the lack of available mechanistic detail. Recently, new evidence has emerged implicating ferroptosis in several types of oxidative stress-mediated cell death, such as those associated with ischemia-reperfusion. This effect could be positively modulated by the interaction of iron and high ascorbate dosing, particularly in cell systems having a high mitotic index. In addition, it has been reported that ascorbate may behave as an adjuvant of favourable anti-tumour effects in cancer therapies such as radiotherapy, radio-chemotherapy, chemotherapy, immunotherapy, or even in monotherapy, as it facilitates tumour cell death through the generation of reactive oxygen species and ferroptosis. In this review, we provide evidence supporting the view that ascorbate should be revisited to develop novel, safe strategies in the treatment of cancer to achieve their application in human medicine.


Asunto(s)
Antioxidantes , Neoplasias , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Humanos , Hierro/metabolismo , Mamíferos/metabolismo , Neoplasias/tratamiento farmacológico , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
9.
Crit Rev Clin Lab Sci ; 59(8): 517-554, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35575431

RESUMEN

Vitamin D has a well-known role in the calcium homeostasis associated with the maintenance of healthy bones. It increases the efficiency of the intestinal absorption of dietary calcium, reduces calcium losses in urine, and mobilizes calcium stored in the skeleton. However, vitamin D receptors are present ubiquitously in the human body and indeed, vitamin D has a plethora of non-calcemic functions. In contrast to most vitamins, sufficient vitamin D can be synthesized in human skin. However, its production can be markedly decreased due to factors such as clothing, sunscreens, intentional avoidance of the direct sunlight, or the high latitude of the residence. Indeed, more than one billion people worldwide are vitamin D deficient, and the deficiency is frequently undiagnosed. The chronic deficiency is not only associated with rickets/osteomalacia/osteoporosis but it is also linked to a higher risk of hypertension, type 1 diabetes, multiple sclerosis, or cancer. Supplementation of vitamin D may be hence beneficial, but the intake of vitamin D should be under the supervision of health professionals because overdosing leads to intoxication with severe health consequences. For monitoring vitamin D, several analytical methods are employed, and their advantages and disadvantages are discussed in detail in this review.


Asunto(s)
Raquitismo , Deficiencia de Vitamina D , Humanos , Vitamina D/metabolismo , Vitamina D/uso terapéutico , Calcio , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Vitaminas , Raquitismo/complicaciones , Raquitismo/tratamiento farmacológico , Calcio de la Dieta
10.
Nutrients ; 14(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35565917

RESUMEN

Blood cancers are characterized by pathological disorders causing uncontrolled hematological cell division. Various strategies were previously explored for the treatment of blood cancers, including chemotherapy, Car-T therapy, targeting chimeric antigen receptors, and platelets therapy. However, all these therapies pose serious challenges that limit their use in blood cancer therapy, such as poor metabolism. Furthermore, the solubility and stability of anticancer drugs limit efficacy and bio-distribution and cause toxicity. The isolation and purification of natural killer cells during Car-T cell therapy is a major challenge. To cope with these challenges, treatment strategies from phyto-medicine scaffolds have been evaluated for blood cancer treatments. Carotenoids represent a versatile class of phytochemical that offer therapeutic efficacy in the treatment of cancer, and specifically blood cancer. Carotenoids, through various signaling pathways and mechanisms, such as the activation of AMPK, expression of autophagy biochemical markers (p62/LC3-II), activation of Keap1-Nrf2/EpRE/ARE signaaling pathway, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), increased level of reactive oxygen species, cleaved poly (ADP-ribose) polymerase (c-PARP), c-caspase-3, -7, decreased level of Bcl-xL, cycle arrest at the G0/G1 phase, and decreasing STAT3 expression results in apoptosis induction and inhibition of cancer cell proliferation. This review article focuses the therapeutic potential of carotenoids in blood cancers, addressing various mechanisms and signaling pathways that mediate their therapeutic efficacy.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Apoptosis , Carotenoides/farmacología , Carotenoides/uso terapéutico , Línea Celular Tumoral , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Receptores Quiméricos de Antígenos/metabolismo
11.
Molecules ; 26(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34946740

RESUMEN

Oxidative stress is the leading player in the onset and development of various diseases. The Keap1-Nrf2 pathway is a pivotal antioxidant system that preserves the cells' redox balance. It decreases inflammation in which the nuclear trans-localization of Nrf2 as a transcription factor promotes various antioxidant responses in cells. Through some other directions and regulatory proteins, this pathway plays a fundamental role in preventing several diseases and reducing their complications. Regulation of the Nrf2 pathway occurs on transcriptional and post-transcriptional levels, and these regulations play a significant role in its activity. There is a subtle correlation between the Nrf2 pathway and the pivotal signaling pathways, including PI3 kinase/AKT/mTOR, NF-κB and HIF-1 factors. This demonstrates its role in the development of various diseases. Curcumin is a yellow polyphenolic compound from Curcuma longa with multiple bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Since hyperglycemia and increased reactive oxygen species (ROS) are the leading causes of common diabetic complications, reducing the generation of ROS can be a fundamental approach to dealing with these complications. Curcumin can be considered a potential treatment option by creating an efficient therapeutic to counteract ROS and reduce its detrimental effects. This review discusses Nrf2 pathway regulation at different levels and its correlation with other important pathways and proteins in the cell involved in the progression of diabetic complications and targeting these pathways by curcumin.


Asunto(s)
Antioxidantes/uso terapéutico , Curcumina/uso terapéutico , Complicaciones de la Diabetes , Hipoxia , Transducción de Señal/efectos de los fármacos , Animales , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/metabolismo , Humanos , Hipoxia/tratamiento farmacológico , Hipoxia/etiología , Hipoxia/metabolismo
12.
Sci Rep ; 11(1): 19259, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584202

RESUMEN

The aim of this study was to determine the antioxidant activity, total phenolics, total flavonoid, proanthocyanidins, and anthocyanins content of eight berry species, namely serviceberry, gooseberry, blackberry, black chokeberry, bilberry, red currant, black currant, and cornelian cherry harvested in the regions of Sarajevo and Tuzla, Bosnia and Herzegovina. The antioxidant activity was determined by a battery of in vitro tests including DPPH radical assay, FRAP assay, ABTS assay, and phosphomolybdate test for total antioxidant capacity. Total phenolics, total flavonoids, and proanthocyanidins ranged from 0.834 to 6.921 mg TAE (tannic acid equivalents), 0.081-0.673 mg of quercetin, and 0.162-3.247 mg of catechin per gram of fresh fruit, respectively. The water extract of fruits had considerable levels of tested constituents and antioxidant activity, with the highest results obtained for black chokeberry. The multivariate clustering analysis showed that water extracts of analyzed species of berries belong to four distinct types in terms of their antioxidants levels and antioxidant activity. Furthermore, these results support the opinion that employment of multiple antioxidant tests is indeed required for adequate in vitro assessment of antioxidant capacity. Results also emphasized the need for a more detailed evaluation of the fruit species with good antioxidant potential (relative to standards), such as cornelian cherry and gooseberry, which are abundant yet not frequently consumed in Bosnia and Herzegovina.


Asunto(s)
Antioxidantes/análisis , Flavonoides/análisis , Frutas/química , Fenoles/análisis , Extractos Vegetales/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Bosnia y Herzegovina , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Fenoles/aislamiento & purificación , Fenoles/farmacología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología
13.
Nutrients ; 13(7)2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34371961

RESUMEN

Here we present an extensive narrative review of the broadly understood modifications to the lifestyles of women with polycystic ovary syndrome (PCOS). The PubMed database was analyzed, combining PCOS entries with causes, diseases, diet supplementation, lifestyle, physical activity, and use of herbs. The metabolic pathways leading to disturbances in lipid, carbohydrate, and hormonal metabolism in targeted patients are described. The article refers to sleep disorders, changes in mental health parameters, and causes of oxidative stress and inflammation. These conditions consistently lead to the occurrence of severe diseases in patients suffering from diabetes, the fatty degeneration of internal organs, infertility, atherosclerosis, cardiovascular diseases, dysbiosis, and cancer. The modification of lifestyles, diet patterns and proper selection of nutrients, pharmacological and natural supplementation in the form of herbs, and physical activity have been proposed. The progress and consequences of PCOS are largely modifiable and depend on the patient's approach, although we have to take into account also the genetic determinants.


Asunto(s)
Dieta , Ejercicio Físico , Estilo de Vida , Síndrome del Ovario Poliquístico/terapia , Suplementos Dietéticos , Disbiosis/complicaciones , Femenino , Microbioma Gastrointestinal , Humanos , Redes y Vías Metabólicas , Plantas Medicinales , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/fisiopatología , Sueño
14.
Plants (Basel) ; 10(2)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530539

RESUMEN

Henna is the current name of the dye prepared from the dry leaf powder of Lawsonia inermis (Lythraceae). Several studies have focused on the chemistry and pharmacology of the henna dyeing active compound, lawsone, obtained from the main constituents of leaves, hennosides, during the processing of plant material. However, knowledge regarding the biological activity of hennosides is largely lacking. In this paper, the redox activity of three hennoside isomers is reported. The pro-oxidative activity was confirmed by their ability to induce mild lysis of erythrocytes and to increase the level of methemoglobin at the concentration ≥ 500 µg/mL. The antioxidant activity of hennosides (concentration ≥100 µg/mL) was determined by FRAP and ABTS assays. At concentration of 500 µg/mL, antioxidant activity of hennoside isomers was equivalent to 0.46 ± 0.08, 0.62 ± 0.28 and 0.35 ± 0.03 mM FeSO4 × 7H2O, and 0.15 ± 0.01, 0.30 ± 0.01 and 0.09 ± 0.01 mM Trolox. Hennosides at 100 µg/mL concentration did not influence viability of human breast cancer cell lines MDA231 and MCF-7 and primary human peripheral blood and periodontal ligament-mesenchymal stem cells, but produced a modest increase in concentration of antioxidants in the cell culture supernatants. The evidenced antioxidant and pro-oxidant activities indicate their potential to act as redox balance regulator, which opens up the possibility of using hennosides in commercial phytomedicines.

15.
Molecules ; 27(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35011412

RESUMEN

Nuclear factor erythroid 2 p45-related factor (2Nrf2) is an essential leucine zipper protein (bZIP) that is primarily located in the cytoplasm under physiological conditions. Nrf2 principally modulates endogenous defense in response to oxidative stress in the brain.In this regard, Nrf2 translocates into the nucleus and heterodimerizes with the tiny Maf or Jun proteins. It then attaches to certain DNA locations in the nucleus, such as electrophile response elements (EpRE) or antioxidant response elements (ARE), to start the transcription of cytoprotective genes. Many neoplasms have been shown to have over activated Nrf2, strongly suggesting that it is responsible for tumors with a poor prognosis. Exactly like curcumin, Zinc-curcumin Zn (II)-curc compound has been shown to induce Nrf2 activation. In the cancer cell lines analyzed, Zinc-curcumin Zn (II)-curc compound can also display anticancer effects via diverse molecular mechanisms, including markedly increasing heme oxygenase-1 (HO-1) p62/SQSTM1 and the Nrf2 protein levels along with its targets. It also strikingly decreases the levels of Nrf2 inhibitor, Kelch-like ECH-associated protein 1 (Keap1) protein.As a result, the crosstalk between p62/SQSTM1 and Nrf2 could be used to improve cancer patient response to treatments. The interconnected anti-inflammatory and antioxidative properties of curcumin resulted from its modulatory effects on Nrf2 signaling pathway have been shown to improve insulin resistance. Curcumin exerts its anti-inflammatory impact through suppressing metabolic reactions and proteins such as Keap1 that provoke inflammation and oxidation. A rational amount of curcumin-activated antioxidant Nrf2 HO-1 and Nrf2-Keap1 pathways and upregulated the modifier subunit of glutamate-cysteine ligase involved in the production of the intracellular antioxidant glutathione. Enhanced expression of glutamate-cysteine ligase, a modifier subunit (GLCM), inhibited transcription of glutamate-cysteine ligase, a catalytic subunit (GCLC). A variety of in vivo, in vitro and clinical studies has been done so far to confirm the protective role of curcumin via Nrf2 regulation. This manuscript is designed to provide a comprehensive review on the molecular aspects of curcumin and its derivatives/analogs via regulation of Nrf2 regulation.


Asunto(s)
Curcumina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Proteínas Portadoras , Curcumina/química , Curcumina/uso terapéutico , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Unión Proteica , Transducción de Señal/efectos de los fármacos , Activación Transcripcional
16.
J Med Chem ; 64(1): 812-839, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33356266

RESUMEN

The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Aß42/Aß40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antioxidantes/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Sitios de Unión , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Relación Estructura-Actividad , Distribución Tisular
17.
J Agric Food Chem ; 68(52): 15428-15439, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33305574

RESUMEN

Some constituents of the Mediterranean diet, such as extra-virgin olive oil (EVOO) contain substances such as hydroxytyrosol (HT) and its metabolite homovanillic alcohol (HA). HT has aroused much interest due to its antioxidant activity as a radical scavenger, whereas only a few studies have been made on the HA molecule. Both chemical synthesis and extraction techniques have been developed to obtain these molecules, with each method having its advantages and drawbacks. In this study, we report the use of tyrosol from olive mill wastewaters as a starting molecule to synthesize HT and HA, using a sustainable procedure characterized by high efficiency and low cost. The effects of HT and HA were evaluated on two cell lines, THP-1 human leukemic monocytes and L-6 myoblasts from rat skeletal muscle, after treating the cells with a radical generator. Both HT and HA efficiently inhibited ROS production. In particular, HT inhibited the proliferation of the THP-1 leukemic monocytes, while HA protected L-6 myoblasts from cytotoxicity.


Asunto(s)
Antioxidantes/aislamiento & purificación , Ácido Homovanílico/aislamiento & purificación , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/aislamiento & purificación , Aguas Residuales/química , Animales , Antioxidantes/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Ácido Homovanílico/química , Humanos , Olea/química , Aceite de Oliva/química , Alcohol Feniletílico/sangre , Alcohol Feniletílico/aislamiento & purificación , Extractos Vegetales/química , Ratas , Especies Reactivas de Oxígeno/metabolismo , Residuos/análisis
18.
Molecules ; 25(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906577

RESUMEN

Inflammation is a physiological response to different pathological, cellular or vascular damages due to physical, chemical or mechanical trauma. It is characterized by pain, redness, heat and swelling. Current natural drugs are carefully chosen as a novel therapeutic strategy for the management of inflammatory diseases. Different phytochemical constituents are present in natural products. These phytochemicals have high efficacy both in vivo and in vitro. Among them, flavonoids occur in many foods, vegetables and herbal medicines and are considered as the most active constituent, having the ability to attenuate inflammation. Kaempferol is a polyphenol that is richly found in fruits, vegetables and herbal medicines. It is also found in plant-derived beverages. Kaempferol is used in the management of various ailments but there is no available review article that can summarize all the natural sources and biological activities specifically focusing on the anti-inflammatory effect of kaempferol. Therefore, this article is aimed at providing a brief updated review of the literature regarding the anti-inflammatory effect of kaempferol and its possible molecular mechanisms of action. Furthermore, the review provides the available updated literature regarding the natural sources, chemistry, biosynthesis, oral absorption, metabolism, bioavailability and therapeutic effect of kaempferol.


Asunto(s)
Antiinflamatorios/farmacología , Suplementos Dietéticos , Quempferoles/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/uso terapéutico , Disponibilidad Biológica , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Fraccionamiento Químico , Flavonoides/química , Flavonoides/farmacología , Humanos , Quempferoles/química , Quempferoles/aislamiento & purificación , Quempferoles/uso terapéutico , Fitoquímicos/química , Fitoquímicos/farmacología , Plantas Medicinales/química , Relación Estructura-Actividad , Pruebas de Toxicidad
19.
Oxid Med Cell Longev ; 2020: 5194508, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774676

RESUMEN

Oxidative stress is a state of excess of prooxidative species relative to the antioxidant defenses (enzymatic and nonenzymatic) in a living organism. The consequence of this imbalance is damage of the major cellular macromolecules (carbohydrates, lipids, proteins, and DNA), which further leads to a gradual loss of tissue and organ function. It has been shown that oxidative stress plays an important role in the pathogenesis of many chronic diseases (cardiovascular, metabolic, and neurodegenerative diseases and cancer) and in the process of aging. Thus, many strategies to combat oxidative stress have been proposed and tested. In this context, food rich in antioxidants has received great attention. Pomegranate, berries, and walnuts have been recognized as "superfood" particularly for their cardioprotective effects. The common characteristic of these foods is the high content of ellagitannins. Since tannins are not bioavailable, they have been neglected in nutrition science and even considered antinutrients for a long time. However, this view has changed dramatically once it was recognized that ellagic acid, released from ellagitannins in the gastrointestinal system, is further metabolized by colonic microbiota to bioavailable compounds-known as urolithins. Thus, urolithins (3,4-benzocoumarin derivatives) have emerged as novel natural bioactive compounds and are now the focus of extensive investigations. So far, urolithins were shown to be powerful modulators of oxidative stress and agents with potential anti-inflammatory, antiproliferative, and antiaging properties. Furthermore, a few synthetic derivatives of urolithins were recognized as lead compounds for new drug development. Available data on urolithin synthesis, physicochemical and pharmacokinetic characteristics, biological activity, and safety will be presented in this review.


Asunto(s)
Cumarinas/uso terapéutico , Ácido Elágico/metabolismo , Cumarinas/farmacología , Humanos , Estrés Oxidativo
20.
Nutrients ; 12(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717940

RESUMEN

Hydroxycinnamic acids (HCAs) are important natural phenolic compounds present in high concentrations in fruits, vegetables, cereals, coffee, tea and wine. Many health beneficial effects have been acknowledged in food products rich in HCAs; however, food processing, dietary intake, bioaccessibility and pharmacokinetics have a high impact on HCAs to reach the target tissue in order to exert their biological activities. In particular, metabolism is of high importance since HCAs' metabolites could either lose the activity or be even more potent compared to the parent compounds. In this review, natural sources and pharmacokinetic properties of HCAs and their esters are presented and discussed. The main focus is on their metabolism along with biological activities and health benefits. Special emphasis is given on specific effects of HCAs' metabolites in comparison with their parent compounds.


Asunto(s)
Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/farmacocinética , Ácidos Cumáricos/uso terapéutico , Animales , Antiinfecciosos , Antiinflamatorios , Antineoplásicos , Disponibilidad Biológica , Café/química , Dieta , Grano Comestible/química , Frutas/química , Humanos , Fenoles/metabolismo , Sustancias Protectoras , Té/química , Verduras/química , Vino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA