Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuropharmacology ; 144: 301-311, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30399367

RESUMEN

Currently, there are no established pharmaceutical strategies that effectively treat social deficits in autism spectrum disorder (ASD). Oxytocin, a neurohormone that plays a role in multiple types of social behaviors, has been proposed as a possible therapeutic against social impairment and other symptoms in ASD. However, from the standpoint of pharmacotherapy, oxytocin has several liabilities as a standard clinical treatment, including rapid metabolism, low brain penetrance, and activity at the vasopressin (antidiuretic hormone) receptors. The present studies describe findings from a preclinical screening program to evaluate oxytocin receptor (OXTR) agonists and oxytocin metabolites for potential clinical use as more optimal treatments. We first investigated two synthetic oxytocin analogs, TC-OT-39 and carbetocin, using in vitro cell-based assays for pharmacological characterization and behavioral tests in the BALB/cByJ mouse model of ASD-like social deficits. Although both TC-OT-39 and carbetocin selectively activate the OXTR, neither synthetic agonist had prosocial efficacy in the BALB/cByJ model. We next evaluated two oxytocin metabolites: OT(4-9) and OT(5-9). While OT(5-9) failed to affect social deficits, the metabolite OT(4-9) led to significant social preference in the BALB/cByJ model, in a dose-dependent manner. The increased sociability was observed at both 24 h and 12 days following the end of a subchronic regimen with OT(4-9) (2.0 mg/kg). Overall, these results suggest that the prosocial effects of oxytocin could be mediated by downstream activity of oxytocin metabolites, raising the possibility of new pathways to target for drug discovery relevant to ASD.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Oxitocina/análogos & derivados , Psicotrópicos/farmacología , Receptores de Oxitocina/agonistas , Conducta Social , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/psicología , Conducta Compulsiva/tratamiento farmacológico , Conducta Compulsiva/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Masculino , Ratones Endogámicos BALB C , Oxitocina/química , Oxitocina/metabolismo , Oxitocina/farmacología , Receptores de Oxitocina/metabolismo
2.
J Med Chem ; 61(15): 6830-6845, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-29990431

RESUMEN

To investigate large library docking's ability to find molecules with joint activity against on-targets and selectivity versus antitargets, the dopamine D2 and serotonin 5-HT2A receptors were targeted, seeking selectivity against the histamine H1 receptor. In a second campaign, κ-opioid receptor ligands were sought with selectivity versus the µ-opioid receptor. While hit rates ranged from 40% to 63% against the on-targets, they were just as good against the antitargets, even though the molecules were selected for their putative lack of binding to the off-targets. Affinities, too, were often as good or better for the off-targets. Even though it was occasionally possible to find selective molecules, such as a mid-nanomolar D2/5-HT2A ligand with 21-fold selectivity versus the H1 receptor, this was the exception. Whereas false-negatives are tolerable in docking screens against on-targets, they are intolerable against antitargets; addressing this problem may demand new strategies in the field.


Asunto(s)
Simulación del Acoplamiento Molecular , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Dopamina D2/metabolismo , Evaluación Preclínica de Medicamentos , Ligandos , Conformación Proteica , Receptor de Serotonina 5-HT2A/química , Receptores de Dopamina D2/química , Especificidad por Sustrato
3.
PLoS Biol ; 11(11): e1001712, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24260022

RESUMEN

Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Simulación por Computador , Evaluación Preclínica de Medicamentos , Humanos , Peristaltismo/efectos de los fármacos , Faringe/efectos de los fármacos , Fenotipo , Quinolinas/farmacología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequeñas
4.
ACS Chem Biol ; 8(5): 1018-26, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23485065

RESUMEN

A prospective, large library virtual screen against an activated ß2-adrenergic receptor (ß2AR) structure returned potent agonists to the exclusion of inverse-agonists, providing the first complement to the previous virtual screening campaigns against inverse-agonist-bound G protein coupled receptor (GPCR) structures, which predicted only inverse-agonists. In addition, two hits recapitulated the signaling profile of the co-crystal ligand with respect to the G protein and arrestin mediated signaling. This functional fidelity has important implications in drug design, as the ability to predict ligands with predefined signaling properties is highly desirable. However, the agonist-bound state provides an uncertain template for modeling the activated conformation of other GPCRs, as a dopamine D2 receptor (DRD2) activated model templated on the activated ß2AR structure returned few hits of only marginal potency.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Evaluación Preclínica de Medicamentos/métodos , Modelos Moleculares , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Benzoxazinas , Sitios de Unión , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Etanolaminas/química , Etanolaminas/farmacología , Células HEK293 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Morfolinas/química , Morfolinas/farmacología , Conformación Proteica , Receptores de Dopamina D2/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Bibliotecas de Moléculas Pequeñas , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA