Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JCI Insight ; 8(7)2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36862514

RESUMEN

Hypothalamic neurons regulate body homeostasis by sensing and integrating changes in the levels of key hormones and primary nutrients (amino acids, glucose, and lipids). However, the molecular mechanisms that enable hypothalamic neurons to detect primary nutrients remain elusive. Here, we identified l-type amino acid transporter 1 (LAT1) in hypothalamic leptin receptor-expressing (LepR-expressing) neurons as being important for systemic energy and bone homeostasis. We observed LAT1-dependent amino acid uptake in the hypothalamus, which was compromised in a mouse model of obesity and diabetes. Mice lacking LAT1 (encoded by solute carrier transporter 7a5, Slc7a5) in LepR-expressing neurons exhibited obesity-related phenotypes and higher bone mass. Slc7a5 deficiency caused sympathetic dysfunction and leptin insensitivity in LepR-expressing neurons before obesity onset. Importantly, restoring Slc7a5 expression selectively in LepR-expressing ventromedial hypothalamus neurons rescued energy and bone homeostasis in mice deficient for Slc7a5 in LepR-expressing cells. Mechanistic target of rapamycin complex-1 (mTORC1) was found to be a crucial mediator of LAT1-dependent regulation of energy and bone homeostasis. These results suggest that the LAT1/mTORC1 axis in LepR-expressing neurons controls energy and bone homeostasis by fine-tuning sympathetic outflow, thus providing in vivo evidence of the implications of amino acid sensing by hypothalamic neurons in body homeostasis.


Asunto(s)
Hipotálamo , Transportador de Aminoácidos Neutros Grandes 1 , Ratones , Animales , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Hipotálamo/metabolismo , Obesidad/metabolismo , Neuronas/metabolismo , Homeostasis/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
2.
DNA Res ; 23(3): 215-24, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27037832

RESUMEN

Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits.


Asunto(s)
Fagopyrum/genética , Genoma de Planta , Fitomejoramiento , Adaptación Fisiológica/genética , Mapeo Contig , ADN de Plantas/química , ADN de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Carácter Cuantitativo Heredable , Análisis de Secuencia de ADN
3.
Dig Endosc ; 26(4): 594-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23902595

RESUMEN

Phlebosclerotic colitis is a rare and recently known disease entity and its etiology is still to be elucidated. Some phlebosclerotic colitis cases are difficult to distinguish from collagenous colitis because of the similarity of pathological findings. In all Japanese case reports of phlebosclerotic colitis in which an association with the use of Chinese herbal medicine is suspected, sansisi (gardenia fruit) was included, suggesting pathogenesis of this disease. We report a case of phlebosclerotic colitis that wasdifficult to be distinguished from collagenous colitis, and an association with the use of Chinese herbal medicine was suspected as the cause of the disease.


Asunto(s)
Colitis Isquémica/inducido químicamente , Colitis Isquémica/diagnóstico , Medicamentos Herbarios Chinos/efectos adversos , Lansoprazol/efectos adversos , Anciano , Angiografía , Biopsia , Colitis Colagenosa/diagnóstico , Colonoscopía , Diagnóstico Diferencial , Humanos , Masculino , Tomografía Computarizada por Rayos X
4.
Am J Physiol Gastrointest Liver Physiol ; 304(8): G708-14, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23370677

RESUMEN

Glucagon-like peptide-2 (GLP-2) is a potent intestinal growth factor derived from enteroendocrine L cells. Although food intake is known to increase GLP-2 secretion, its regulatory mechanisms are largely unknown as a result of its very short half-life in venules. The aims of this study were to compare the effects of luminal nutrients on the stimulation of GLP-2 secretion in vivo using lymph samples and to clarify the involvement of the sweet taste receptor in this process in vitro. Lymph samples were collected from the thoracic duct after bolus administration of dietary lipids or sweetening agents into the duodenum of rats. Human enteroendocrine NCI-H716 cells were also used to compare the effects of various nutrients on GLP-2 secretion. GLP-2 concentrations were measured by ELISA in vivo and in vitro. GLP-2 secretion was enhanced by polyunsaturated fatty acid- and monounsaturated fatty acid-rich dietary oils, dietary carbohydrates, and some kinds of sweeteners in rats; this effect was reproduced in NCI-H716 cells using α-linolenic acid (αLA), glucose, and sweeteners. GLP-2 secretion induced by sweetening agents was inhibited by lactisole, a sweetness-antagonizing inhibitor of T1R3. In contrast, lactisole was unable to inhibit GLP-2 secretion induced by αLA alone. Our results suggested that fatty acid- and sweetener-induced GLP-2 secretion may be mediated by two different pathways, with the sweet taste receptor involved in the regulation of the latter.


Asunto(s)
Grasas de la Dieta/farmacología , Células Enteroendocrinas/metabolismo , Péptido 2 Similar al Glucagón/metabolismo , Edulcorantes/farmacología , Gusto/fisiología , Animales , Derivados del Benceno/farmacología , Línea Celular Tumoral , Carbohidratos de la Dieta/farmacología , Células Enteroendocrinas/citología , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Insaturados/farmacología , Glucosa/farmacología , Humanos , Sistema Linfático/metabolismo , Masculino , Ratas , Ratas Wistar , Conducto Torácico/metabolismo , Vénulas/metabolismo
5.
PLoS One ; 7(2): e31264, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22312442

RESUMEN

The different forms of flowers in a species have attracted the attention of many evolutionary biologists, including Charles Darwin. In Fagopyrum esculentum (common buckwheat), the occurrence of dimorphic flowers, namely short-styled and long-styled flowers, is associated with a type of self-incompatibility (SI) called heteromorphic SI. The floral morphology and intra-morph incompatibility are both determined by a single genetic locus named the S-locus. Plants with short-styled flowers are heterozygous (S/s) and plants with long-styled flowers are homozygous recessive (s/s) at the S-locus. Despite recent progress in our understanding of the molecular basis of flower development and plant SI systems, the molecular mechanisms underlying heteromorphic SI remain unresolved. By examining differentially expressed genes from the styles of the two floral morphs, we identified a gene that is expressed only in short-styled plants. The novel gene identified was completely linked to the S-locus in a linkage analysis of 1,373 plants and had homology to EARLY FLOWERING 3. We named this gene S-LOCUS EARLY FLOWERING 3 (S-ELF3). In an ion-beam-induced mutant that harbored a deletion in the genomic region spanning S-ELF3, a phenotype shift from short-styled flowers to long-styled flowers was observed. Furthermore, S-ELF3 was present in the genome of short-styled plants and absent from that of long-styled plants both in world-wide landraces of buckwheat and in two distantly related Fagopyrum species that exhibit heteromorphic SI. Moreover, independent disruptions of S-ELF3 were detected in a recently emerged self-compatible Fagopyrum species and a self-compatible line of buckwheat. The nonessential role of S-ELF3 in the survival of individuals and the prolonged evolutionary presence only in the genomes of short-styled plants exhibiting heteromorphic SI suggests that S-ELF3 is a suitable candidate gene for the control of the short-styled phenotype of buckwheat plants.


Asunto(s)
Fagopyrum/genética , Fagopyrum/fisiología , Flores/anatomía & histología , Genoma de Planta/genética , Proteínas de Plantas/genética , Autoincompatibilidad en las Plantas con Flores/genética , Secuencia de Aminoácidos , Fagopyrum/anatomía & histología , Fagopyrum/metabolismo , Flores/genética , Flores/metabolismo , Flores/fisiología , Perfilación de la Expresión Génica , Mutagénesis , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ARN de Planta/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA