Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Calcif Tissue Int ; 62(2): 114-21, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9437044

RESUMEN

Endochondral bone formation occurs through a series of developmentally regulated cellular stages, from initial formation of cartilage tissue to calcified cartilage, resorption, and replacement by bone tissue. Nasal cartilage cells isolated by enzymatic digestion from rat fetuses were seeded at a final density of 10(5) cell/cm2 and cultured in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal calf serum in the presence of ascorbic acid and beta-glycerophosphate. First, cells lost their phenotype but in this condition they rapidly reexpressed the chondrocyte phenotype and were able to form calcified cartilaginous nodules with the morphological appearance of cartilage mineralization that occurs in vivo during endochondral ossification. In this mineralizing chondrocyte culture system, we investigated, between day 3 and day 15, the pattern expression of types II and X collagen, proteoglycan core protein, characteristic markers of chondrocyte differentiation, as well as alkaline phosphatase and osteocalcin associated with the mineralization process. Analysis of labeled collagen and immunoblotting revealed type I collagen synthesis associated with the loss of chondrocyte phenotype at the beginning of the culture. However, our culture conditions promoted extracellular matrix mineralization and cell differentiation towards the hypertrophic phenotype. This differentiation process was characterized by the induction of type X collagen mRNA, alkaline phosphatase, and diminished expression of type II collagen and core protein of large proteoglycan after an increase in their mRNA levels before the mineralizing process. These results revealed distinct switches of the specific molecular markers and indicated a similar temporal expression to that observed in vivo recapitulating all stages of the differentiation program in vitro.


Asunto(s)
Calcificación Fisiológica , Condrocitos/citología , Condrocitos/metabolismo , Proteínas de la Matriz Extracelular/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteoglicanos , Agrecanos , Fosfatasa Alcalina/biosíntesis , Fosfatasa Alcalina/genética , Animales , Calcificación Fisiológica/genética , Diferenciación Celular/genética , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/biosíntesis , Proteoglicanos Tipo Condroitín Sulfato/genética , Colágeno/biosíntesis , Feto , Glicoproteínas/biosíntesis , Glicoproteínas/genética , Lectinas Tipo C , Osteocalcina/biosíntesis , Osteocalcina/genética , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley
2.
Calcif Tissue Int ; 55(6): 458-66, 1994 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-7895185

RESUMEN

Rat bone cells were cultured in the presence of bioactive glass-ceramic containing crystalline apatite and wollastonite. Scanning electron microscopy observations of the surface of the seeded ceramic disks revealed that cells attached, spread, and proliferated on the material surface. Soaking in cell-free culture medium showed that no change occurred in the surface structure. However, when cultured with bone cells and observed under a transmission electron microscope, an electron-dense layer was noted initially at the surface of the material, before bone formation occurred. In addition, energy-dispersive X-ray microanalysis demonstrated the presence of calcium and phosphorus in this layer. Progressively, during the following days of culture, active osteoblasts synthetized and laid down an osteoid matrix composed of numerous collagen fibrils arranged either parallel or perpendicularly to the first-formed electron-dense layer. Mineralization initiated on the ceramic surface dispersed then along the collagenous fibrils, leading to a mineralized matrix which surrounded the ceramic particles. These results demonstrate the capacity of apatite-wollastonite glass ceramic to initiate biomineralization in osteoblast cultures and to achieve a direct bond between the surface apatite layer of the bioactive glass-ceramic and the mineralized bone matrix.


Asunto(s)
Apatitas/farmacología , Matriz Ósea/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Compuestos de Calcio/farmacología , Osteoblastos/efectos de los fármacos , Silicatos/farmacología , Animales , Materiales Biocompatibles , Matriz Ósea/citología , Matriz Ósea/metabolismo , Calcio/metabolismo , Adhesión Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Células Cultivadas , Cerámica/química , Cristalización , Microanálisis por Sonda Electrónica , Vidrio/química , Microscopía Electrónica , Microscopía Electrónica de Rastreo , Osteoblastos/citología , Osteoblastos/ultraestructura , Fósforo/metabolismo , Ratas , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA