Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EClinicalMedicine ; 68: 102364, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38586479

RESUMEN

Background: RBT-1 is a combination drug of stannic protoporfin (SnPP) and iron sucrose (FeS) that elicits a preconditioning response through activation of antioxidant, anti-inflammatory, and iron-scavenging pathways, as measured by heme oxygenase-1 (HO-1), interleukin-10 (IL-10), and ferritin, respectively. Our primary aim was to determine whether RBT-1 administered before surgery would safely and effectively elicit a preconditioning response in patients undergoing cardiac surgery. Methods: This phase 2, double-blind, randomised, placebo-controlled, parallel-group, adaptive trial, conducted in 19 centres across the USA, Canada, and Australia, enrolled patients scheduled to undergo non-emergent coronary artery bypass graft (CABG) and/or heart valve surgery with cardiopulmonary bypass. Patients were randomised (1:1:1) to receive either a single intravenous infusion of high-dose RBT-1 (90 mg SnPP/240 mg FeS), low-dose RBT-1 (45 mg SnPP/240 mg FeS), or placebo within 24-48 h before surgery. The primary outcome was a preoperative preconditioning response, measured by a composite of plasma HO-1, IL-10, and ferritin. Safety was assessed by adverse events and laboratory parameters. Prespecified adaptive criteria permitted early stopping and enrichment. This trial is registered with ClinicalTrials.gov, NCT04564833. Findings: Between Aug 4, 2021, and Nov 9, 2022, of 135 patients who were enrolled and randomly allocated to a study group (46 high-dose, 45 low-dose, 44 placebo), 132 (98%) were included in the primary analysis (46 high-dose, 42 low-dose, 44 placebo). At interim, the trial proceeded to full enrollment without enrichment. RBT-1 led to a greater preconditioning response than did placebo at high-dose (geometric least squares mean [GLSM] ratio, 3.58; 95% CI, 2.91-4.41; p < 0.0001) and low-dose (GLSM ratio, 2.62; 95% CI, 2.11-3.24; p < 0.0001). RBT-1 was generally well tolerated by patients. The primary drug-related adverse event was dose-dependent photosensitivity, observed in 12 (26%) of 46 patients treated with high-dose RBT-1 and in six (13%) of 45 patients treated with low-dose RBT-1 (safety population). Interpretation: RBT-1 demonstrated a statistically significant cytoprotective preconditioning response and a manageable safety profile. Further research is needed. A phase 3 trial is planned. Funding: Renibus Therapeutics, Inc.

2.
Sci Rep ; 6: 19057, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26751849

RESUMEN

The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using (31)P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest.


Asunto(s)
Ejercicio Físico/fisiología , Espectroscopía de Resonancia Magnética/métodos , Mitocondrias/metabolismo , Fósforo/metabolismo , Adulto , Tobillo/fisiología , Bases de Datos como Asunto , Femenino , Humanos , Concentración de Iones de Hidrógeno , Lipodistrofia/diagnóstico , Masculino , Fosfocreatina/metabolismo , Reproducibilidad de los Resultados
3.
PLoS One ; 10(8): e0136382, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26308617

RESUMEN

Herein, we present a novel imaging platform to study the biological effects of non-invasive radiofrequency (RF) electric field cancer hyperthermia. This system allows for real-time in vivo intravital microscopy (IVM) imaging of radiofrequency-induced biological alterations such as changes in vessel structure and drug perfusion. Our results indicate that the IVM system is able to handle exposure to high-power electric-fields without inducing significant hardware damage or imaging artifacts. Furthermore, short durations of low-power (< 200 W) radiofrequency exposure increased transport and perfusion of fluorescent tracers into the tumors at temperatures below 41°C. Vessel deformations and blood coagulation were seen for tumor temperatures around 44°C. These results highlight the use of our integrated IVM-RF imaging platform as a powerful new tool to visualize the dynamics and interplay between radiofrequency energy and biological tissues, organs, and tumors.


Asunto(s)
Diagnóstico por Imagen , Hipertermia Inducida , Microscopía Intravital/métodos , Neoplasias Mamarias Animales/patología , Ondas de Radio , Algoritmos , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes/farmacocinética , Neoplasias Mamarias Animales/terapia , Ratones , Distribución Tisular
4.
PLoS One ; 9(4): e94703, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24736547

RESUMEN

Porous silicon (pSi) microparticles, in diverse sizes and shapes, can be functionalized to present pathogen-associated molecular patterns that activate dendritic cells. Intraperitoneal injection of MPL-adsorbed pSi microparticles, in contrast to free MPL, resulted in the induction of local inflammation, reflected in the recruitment of neutrophils, eosinophils and proinflammatory monocytes, and the depletion of resident macrophages and mast cells at the injection site. Injection of microparticle-bound MPL resulted in enhanced secretion of the T helper 1 associated cytokines IFN-γ and TNF-α by peritoneal exudate and lymph node cells in response to secondary stimuli while decreasing the anti-inflammatory cytokine IL-10. MPL-pSi microparticles independently exhibited anti-tumor effects and enhanced tumor suppression by low dose doxorubicin nanoliposomes. Intravascular injection of the MPL-bound microparticles increased serum IL-1ß levels, which was blocked by the IL-1 receptor antagonist Anakinra. The microparticles also potentiated tumor infiltration by dendritic cells, cytotoxic T lymphocytes, and F4/80+ macrophages, however, a specific reduction was observed in CD204+ macrophages.


Asunto(s)
Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Lípido A/análogos & derivados , Silicio/química , Células TH1/citología , Células TH1/inmunología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Transporte Biológico , Células de la Médula Ósea/citología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Lípido A/química , Lípido A/inmunología , Liposomas , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Ratones , Microesferas , Nanopartículas , Tamaño de la Partícula , Porosidad , Silicio/metabolismo , Células TH1/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA