Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Proteomics ; 270: 104740, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36191802

RESUMEN

This study examines whether maternal low ω6:ω3 ratio diet and offspring SW supplementation can improve offspring immunity and performance by elucidating the effects on piglet serum proteome. A total of 16 sows were given either a standard (CR, 13:1) or low ω6:ω3 ratio diet (LR, 4:1) during pregnancy and lactation and their male weaned piglets were supplemented with SW powder (4 g/kg, SW) or not (CT) in a 21-day post-weaning (PW) diet. Four PW piglet groups were then identified based on dam and piglet treatment, namely CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet serum collected at weaning and d21 PW were analysed (n = 5 each) using TMT-based quantitative proteomics and validated by appropriate assays. The differentially abundant proteins (n = 122) displayed positive effects of maternal LR diet on anti-inflammatory properties and innate immune stimulation. Progeny SW diet activated the innate immunity and enhance the host defence during inflammation. These data demonstrate the value of decreasing ω6:ω3 ratio in maternal diet and SW supplementation in PW piglet's diet to boost their immunity and anti-inflammation properties. SIGNIFICANCE: This novel proteomic study in post-weaned piglets addresses the interplay between maternal and offspring nutritional interventions in a context of rapid and dynamic alterations in piglet metabolic status around weaning. Decreasing ω6:ω3 ratio in maternal diet and SW supplementation in PW piglet's diet can boost their immunity and anti-inflammation properties. This study also provides new insights into piglet serum proteome regulation during post-weaning, a critical development period in swine.


Asunto(s)
Algas Marinas , Embarazo , Porcinos , Animales , Femenino , Masculino , Proteoma , Proteómica , Dieta , Suplementos Dietéticos , Verduras , Alimentación Animal/análisis
2.
J Proteomics ; 270: 104739, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36174954

RESUMEN

This study evaluates how long-term dietary low ω6:ω3 ratio in sows and offspring's seaweed (SW) intake affects piglet intestinal function and growth through modifying ileum proteome. Sows were assigned to either control diet (CR, ω6:ω3 ratio = 13:1) or treatment diet (LR, ω6:ω3 = 4:1) during gestation and lactation (n = 8 each). The male weaned offspring were received a basal diet with or without SW powder supplementation (4 g/kg) for 21 days, denoted as SW and CT groups, respectively. In total, four groups of weaned piglets were formed following maternal and offspring's diets combination, represented by CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet ileum tissue was collected on day 22 post-weaning and analysed using TMT-based quantitative proteomics. The differentially abundant proteins (n = 300) showed the influence of maternal LR diet on protein synthesis, cell proliferation, and cell cycle regulation. In contrast, the SW diet lowered the inflammation severity and promoted ileal tissue development in CRSW piglets but reduced the fat absorption capacity in LRSW piglets. These results uncovered the mechanism behind the anti-inflammation and intestinal-boosting effects of maternal LR diet in piglets supplemented with SW.


Asunto(s)
Proteoma , Algas Marinas , Porcinos , Animales , Masculino , Femenino , Proteómica , Dieta , Suplementos Dietéticos , Lactancia , Íleon , Verduras , Alimentación Animal/análisis
3.
Molecules ; 27(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35566276

RESUMEN

Elevated omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) ratios in swine diets can potentially impose a higher risk of inflammatory and metabolic diseases in swine. A low ratio between the two omega PUFAs has beneficial effects on sows' and piglets' production performance and immunity status. At present, there are few studies on how sow nutrition directly affects the protein and fat deposition in suckling piglets. Two groups of sows were fed diets with high or low n-6/n-3 polyunsaturated ratios of 13:1 (SOY) and 4:1 (LIN), respectively, during gestation and lactation. Longissimus dorsi muscle and adipose tissue from newborn piglets, nourished only with sow's milk, were subjected to fatty acid profiling by gas chromatography-mass spectrometry (GC-MS) and to proteomics assays based on nano-liquid chromatography coupled to high-resolution tandem mass spectrometry (nLC-HRMS). Fatty acid profiles on both muscle and adipose tissues resembled the magnitude of the differences between fatty acid across diets. Proteomic analysis revealed overabundance of 4 muscle and 11 adipose tissue proteins in SOY compared to LIN in both piglet tissues. The detected overabundance of haptoglobin, an acute-phase protein, and the stimulation of protein-coding genes and proteins related to the innate immune response and acute inflammatory response could be associated with the pro-inflammatory role of n-6 PUFAs.


Asunto(s)
Ácidos Grasos Omega-3 , Proteómica , Tejido Adiposo/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos/análisis , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/análisis , Femenino , Lactancia , Leche/química , Músculos/química , Embarazo , Porcinos
4.
J Proteomics ; 260: 104562, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35314360

RESUMEN

This study aimed to investigate the characteristic proteomic pattern of plasma from sows supplemented with low dietary ω6:ω3 fatty acids (FAs) ratio during gestation and lactation. Two dietary treatments (n = 8 each) comprised either a control ratio of ω6:ω3 FAs (CR, 13:1 during gestation and 10:1 during lactation) or a low ratio (LR, 4:1 during gestation and lactation) by adding soybean oil or linseed oil, respectively. High-resolution mass spectrometry-based quantitative proteomics was applied on plasma (n = 5 each) at day 108 of gestation (G108) and at the end of lactation (L-End), and a total of 379 proteins and 202 master proteins were identified. Out of these, four differentially abundant proteins between LR and CR samples at G108 may relate to serine-type endopeptidase inhibitor activity. Differentially abundant proteins in L-End versus G108 (12 up-regulated and 10 down-regulated) were positively correlated with the events that regulate plasma lipoproteins, stimulus- and defence-responses. These findings demonstrate the benefit of increased dietary ω3 FAs in modifying proteins involved in protective mechanisms against increased stresses in key life cycle phases in pigs. In addition, proteome changes from late gestation to late lactation disclosed the underlying mechanism of pigs in response to reproduction-related stimuli. SIGNIFICANCE: This study aimed to provide a proteomics insight into the beneficial effects of maternal diet supplementation with a low ω6:ω3 fatty acids ratio, based on previously reported performance and zootechnical data. The results suggest that a low dietary ω6:ω3 fatty acids ratio could enhance the cellular defence mechanisms against increased stresses and in particular to oxidative stress in sows during gestation and lactation, as reflected in proteomic changes of haptoglobin (HP), alpha-1-antitrypsin (SERPINA1) and serum amyloid P-component (APCS). Furthermore, significantly changed proteome profiles in sow plasma between late gestation and lactation phases have been revealed for the first time. This finding identified the adaptation mechanisms of sows to changing physiological events during reproduction.


Asunto(s)
Ácidos Grasos Omega-3 , Lactancia , Alimentación Animal/análisis , Animales , Proteínas Sanguíneas , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Femenino , Embarazo , Proteoma , Proteómica , Porcinos
5.
J Proteomics ; 249: 104338, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34343709

RESUMEN

Exosomes are membranous vesicles of endocytic origin, recently been considered as major players in cell-cell communication. Milk is highly complex, and diverse biocomponents provide adequate nutrition, transfer immunity, and promote adequate neonate development. Milk exosomes are suggested to have a key role in these processes, yet to be further explored, and the alteration of the exosomes' cargo in different stages of lactation stages is important for understanding the factors relevant in nursing and also for improving milk replacer products both for humans and animals. We isolated exosomes from porcine milk in different lactation stages and analyzed their content using a TMT-based high-resolution quantitative proteomic approach. Exosomes were isolated using ultracentrifugation coupled with size exclusion chromatography to enrich milk-derived exosomes in samples obtained at day 0, 7, and 14 after parturition, and characterized by nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. Quantitative proteomics analysis revealed different proteome profiles for colostrum exosomes and milk exosomes. The functional analysis highlighted pathways related to the regulation of homeostasis to be upregulated in colostrum exosomes, and pathways such as endothelial cell development and lipid metabolism to be upregulated in mature milk exosomes. This study endorses the importance of exosomes as active biocomponents of milk and provides knowledge for future studies exploring their role in the regulation of immunity and growth of the newborn. SIGNIFICANCE: The identified functional proteome and protein-protein interaction networks identified in our study help to elucidate the role of milk exosomes in different lactation periods. The results generated herein are of relevance for the basic understanding of their impact on the infant's development but also for bringing forward the manufacturing of milk replacers.


Asunto(s)
Exosomas , Proteoma , Animales , Calostro , Femenino , Humanos , Leche , Embarazo , Proteómica , Porcinos
6.
Animals (Basel) ; 9(11)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31689973

RESUMEN

Fat supplementation has long been used in dairy ruminant nutrition to increase the fat content of milk and supply energy during particularly challenging production phases. Throughout the years, advances have been made in the knowledge of metabolic pathways and technological treatments of dietary fatty acids (FAs), resulting in safer and more widely available lipid supplements. There is an awareness of the positive nutraceutical effects of the addition of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to fat supplementation, which provides consumers with healthier animal products through manipulation of their characteristics. If it is true that benefits to human health can be derived from the consumption of animal products rich in bioactive fatty acids (FAs), then it is reasonable to think that the same effect can occur in the animals to which the supplements are administered. Therefore, recent advances in fat supplementation of dairy goats with reference to the effect on health status have been summarized. In vivo trials and in vitro analysis on cultured cells, as well as histological and transcriptomic analyses of hepatic and adipose tissue, have been reviewed in order to assess documented relationships between specific FAs, lipid metabolism, and immunity.

7.
Res Vet Sci ; 125: 451-458, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29128114

RESUMEN

The aim of the present study was to investigate how maternal diet can influence the adipose tissue of goat kids. Omental adipose tissue proteomes of goat-kids from mothers fed with diet enriched with stearic acid (ST-kids), fish oil (FO-kids) and standard diets (CTRL) were determined by quantitative iTRAQ 2D-LC-MS/MS analysis. Twenty proteins were found to be differentially expressed in suckling kids' omental adipose tissue. Stearic acid induces changes in a higher number of proteins when compared to fish oil. Eleven proteins, namely AARS, ECl1, PMSC2, CP, HSPA8, GPD1, RPL7, OGDH, RPL24, FGA and RPL5 were decreased in ST-kids only. Four proteins, namely DLST, EEF1G, BCAP31 and RALA were decreased in FO-kids only, and one, NUCKS1, was increased. Four proteins, namely PMSC1, PPIB, TUB5×2 and EIF5A1, were be less abundant in both ST- and FO- kids. Most of the protein whose abundance was decreased in ST kids (10 out of 15) are involved in protein metabolism and catabolism pathways. Qualitative gene expression analysis confirmed that all the proteins identified by mass spectrometry, with the exception of FGA, were produced by adipose tissue. Quantitative gene expression analysis demonstrated that two proteins, namely CP, a minor acute phase protein, and ECl1, involved in fatty acid beta oxidation, were downregulated at mRNA level as well. ECl1 gene expression was downregulated in ST-kids AT as compared to Ctrl-kids and CP was downregulated in both ST- and FO-kids. The present results demonstrate that it is possible to influence adipose goat-kid proteome by modifying the maternal diet.


Asunto(s)
Animales Lactantes/fisiología , Dieta/veterinaria , Ácidos Grasos/administración & dosificación , Ácidos Grasos/farmacología , Cabras/fisiología , Proteoma/efectos de los fármacos , Tejido Adiposo/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Cromatografía Liquida , Suplementos Dietéticos/análisis , Ácidos Grasos/metabolismo , Aceites de Pescado , ARN Mensajero/metabolismo , Espectrometría de Masas en Tándem
8.
Funct Integr Genomics ; 10(4): 561-75, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20607344

RESUMEN

Long-term mammary expression patterns of lipogenic gene networks due to dietary lipid remain largely unknown. Mammary tissue was biopsied for transcript profiling of 29 genes at 0, 7, and 21 days of feeding cows saturated lipid (EB100) or a blend of fish/soybean oil (FSO) to depress milk fat. Milk fat yield decreased gradually with FSO and coincided with lower molar yield of fatty acids synthesized de novo, stearic acid, and oleic acid. The PPARγ targets LPIN1 and SREBF1 along with ACSS2, ACACA, FASN, and LPL increased by day 7 of feeding EB100, but differences between diets disappeared by day 21. Expression of SCAP increased markedly over time with FSO and differed from EB100 by approximately sevenfold on day 21. Expression of THRSP decreased by day 7 with both diets and returned to basal levels by day 21. SCD expression increased linearly through 7 days and remained elevated with both diets, a likely mechanism to ensure the proper level of endogenous oleic acid via desaturation of dietary stearate (EB100) or via more SCD protein to account for the reduction in stearate supply from the rumen (FSO). Despite this response, endogenous oleate was insufficient to restore normal milk fat synthesis. Only 2 of 29 genes differed in expression between diets on day 21, suggesting that transcriptional control mechanisms regulating fat synthesis were established as early as 7 days post-feeding. Gene expression reflected vastly different physiological responses by mammary tissue to adjust its metabolism to the influx of saturated fatty acids, trans10-18:1, and/or to the lack of stearic acid.


Asunto(s)
Suplementos Dietéticos , Redes Reguladoras de Genes , Lípidos , Glándulas Mamarias Animales/fisiología , Leche/química , Estearoil-CoA Desaturasa/metabolismo , Animales , Bovinos , Dieta , Grasas de la Dieta/metabolismo , Ácidos Grasos/análisis , Femenino , Regulación de la Expresión Génica , Lípidos/administración & dosificación , Lípidos/biosíntesis , Lípidos/genética , Glándulas Mamarias Animales/anatomía & histología , Estearoil-CoA Desaturasa/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA