Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Microbiol ; 204(8): 479, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831726

RESUMEN

In this study, calcium phosphate nanoparticles-based (STCNV) and montanide oil adjuvant vaccine (STOAV) containing outer membrane proteins (Omps) of S. Typhi were evaluated for inducing oxidative stress indicators [reduced glutathione (GSH), lipid peroxidation (LPO), catalase, superoxide dismutase (SOD), and total protein] in the tissues of mice after vaccination. The GSH levels though slightly high in the liver, kidney, and lungs of STCNV group were not significantly different from STOAV and the control group (STC). There was no significant difference in LPO levels in any group for any tissue. The significantly lower activities of catalase were observed in the kidney and lungs of the STCNV group as compared to STOAV and STC group, while in the liver, STCNV group revealed lower catalase activity in comparison to the control group. No significant difference in the SOD activities between the two vaccinated groups was observed. The total protein contents in all the organs showed no significant difference in the vaccinated and the control group. The vaccines may induce long-term inflammatory response and consequently damage vital organs; this study revealed no long-term oxidative stress in all the three vital organs, suggesting that these vaccines may not cause oxidative damages in the vital organs of mice.


Asunto(s)
Nanopartículas , Vacunas , Adyuvantes Inmunológicos , Animales , Antioxidantes/farmacología , Catalasa/metabolismo , Glutatión/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Aceite Mineral , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Salmonella typhi/metabolismo , Superóxido Dismutasa/metabolismo
2.
J Med Microbiol ; 71(4)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35476604

RESUMEN

Introduction. The conventional adjuvants used in vaccines have limitations like induction of an imbalanced Th1 and Th2 immune response. To overcome this limitation, novel adjuvants and newer forms of existing adjuvants like calcium phosphate nanoparticles are being tested.Hypothesis/Gap Statement. Calcium phosphate adjuvanted outer membrane proteins vaccine may work as an efficient, safe and cost effective vaccine against Salmonella Typhi.Aim. Our goals were to evaluate the potential of calcium phosphate nanoparticles as an adjuvant using outer membrane proteins (Omps) of Salmonella Typhi as antigens for immune response, with montanide (commercially available adjuvant) as control, and its toxicity in rats.Methodology. Calcium phosphate adjuvanted outer membrane proteins nanoparticles were synthesized and characterized. The efficacy of vaccine formulation in mice and toxicity assay were carried out in rats.Results. The calcium phosphate nanoparticles varying in size between 20-50 nm had entrapment efficiency of 41.5% and loading capacity of 54%. The calcium phosphate nanoparticle-Omps vaccine formulation (nanoparticle-Omps) induced a strong humoral immune response, which was significantly higher than the control group for the entire period of study. In the montanide-Omps group the initial very high immune response declined steeply and then remained steady. The immune response induced by nanoparticle-Omps did not change appreciably. The cell mediated immune response as measured by lymphocyte proliferation assay and delayed type hypersensitivity test showed a higher response (P<0.01) for the nanoparticles-Omps group as compared to montanide-Omps group. The bacterial clearance assay also showed higher clearance in the nanoparticles-Omps group as compared to montanide-Omps group (approx 1.4%). The toxicity analysis in rats showed no difference in the values of toxicity biomarkers and blood chemistry parameters, revealing vaccine formulation was non-toxic in rats.Conclusion. Calcium phosphate nanoparticles as adjuvant in vaccines is safe, have good encapsulation and loading capacity and induce a strong cell mediated, humoral and protective immune response.


Asunto(s)
Nanopartículas , Fiebre Tifoidea , Adyuvantes Inmunológicos , Animales , Fosfatos de Calcio/química , Proteínas de la Membrana , Ratones , Aceite Mineral , Nanopartículas/química , Ratas , Salmonella , Salmonella typhi , Fiebre Tifoidea/prevención & control , Desarrollo de Vacunas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA