Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oncotarget ; 6(18): 16396-410, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26036628

RESUMEN

Obesity greatly influences risk, progression and prognosis of breast cancer. As molecular effects of obesity are largely mediated by adipocytokine leptin, finding effective novel strategies to antagonize neoplastic effects of leptin is desirable to disrupt obesity-cancer axis. Present study is designed to test the efficacy of honokiol (HNK), a bioactive polyphenol from Magnolia grandiflora, against oncogenic actions of leptin and systematically elucidate the underlying mechanisms. Our results show that HNK significantly inhibits leptin-induced breast-cancer cell-growth, invasion, migration and leptin-induced breast-tumor-xenograft growth. Using a phospho-kinase screening array, we discover that HNK inhibits phosphorylation and activation of key molecules of leptin-signaling-network. Specifically, HNK inhibits leptin-induced Wnt1-MTA1-ß-catenin signaling in vitro and in vivo. Finally, an integral role of miR-34a in HNK-mediated inhibition of Wnt1-MTA1-ß-catenin axis was discovered. HNK inhibits Stat3 phosphorylation, abrogates its recruitment to miR-34a promoter and this release of repressor-Stat3 results in miR-34a activation leading to Wnt1-MTA1-ß-catenin inhibition. Accordingly, HNK treatment inhibited breast tumor growth in diet-induced-obese mouse model (exhibiting high leptin levels) in a manner associated with activation of miR-34a and inhibition of MTA1-ß-catenin. These data provide first in vitro and in vivo evidence for the leptin-antagonist potential of HNK revealing a crosstalk between HNK and miR34a and Wnt1-MTA1-ß-catenin axis.


Asunto(s)
Compuestos de Bifenilo/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Leptina/metabolismo , Lignanos/uso terapéutico , Proteínas Represoras/antagonistas & inhibidores , Proteína Wnt1/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Ciclina D1/antagonistas & inhibidores , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Histona Desacetilasas , Humanos , Células MCF-7 , Magnolia/metabolismo , Ratones , Ratones Desnudos , Ratones Obesos , MicroARNs/genética , Invasividad Neoplásica/prevención & control , Obesidad/patología , Fosforilación/efectos de los fármacos , Extractos Vegetales , Regiones Promotoras Genéticas/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño , Factor de Transcripción STAT3/genética , Transducción de Señal/efectos de los fármacos , Esferoides Celulares , Transactivadores , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Semin Cancer Biol ; 35 Suppl: S25-S54, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25892662

RESUMEN

Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Neoplasias/patología , Neoplasias/terapia , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/biosíntesis , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Transducción de Señal/efectos de los fármacos
3.
Carcinogenesis ; 33(4): 918-30, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22345290

RESUMEN

Understanding the molecular pathways that contribute to the development of tamoxifen resistance is a critical research priority as acquired tamoxifen resistance is the principal cause of poor prognosis and death of patients with originally good prognosis hormone-responsive breast tumors. In this report, we provide evidence that Med1, an important subunit of mediator coactivator complex, is spontaneously upregulated during acquired tamoxifen-resistance development potentiating agonist activities of tamoxifen. Phosphorylated Med1 and estrogen receptor (ER) are abundant in tamoxifen-resistant breast cancer cells due to persistent activation of extracellular signal-regulated kinases. Mechanistically, phosphorylated Med1 exhibits nuclear accumulation, increased interaction with ER and higher tamoxifen-induced recruitment to ER-responsive promoters, which is abrogated by inhibition of Med1 phosphorylation. Stable knockdown of Med1 in tamoxifen-resistant cells not only reverses tamoxifen resistance in vitro but also in vivo. Finally, higher expression levels of Med1 in the tumor significantly correlated with tamoxifen resistance in ER-positive breast cancer patients on adjuvant tamoxifen monotherapy. In silico analysis of breast cancer, utilizing published profiling studies showed that Med1 is overexpressed in aggressive subsets. These findings provide what we believe is the first evidence for a critical role for Med1 in tamoxifen resistance and identify this coactivator protein as an essential effector of the tamoxifen-induced breast cancer growth.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Resistencia a Antineoplásicos/fisiología , Subunidad 1 del Complejo Mediador/fisiología , Tamoxifeno/farmacología , Western Blotting , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Inmunoprecipitación , Subunidad 1 del Complejo Mediador/metabolismo , Microscopía Fluorescente , Fosforilación , Receptores de Estrógenos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA