Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanoscale ; 11(1): 72-88, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30357214

RESUMEN

In this study, taking into consideration the limitations of current treatments of glioblastoma multiforme, we fabricated a biomimetic lipid-based magnetic nanovector with a good loading capacity and a sustained release profile of the encapsulated chemotherapeutic drug, temozolomide. These nanostructures demonstrated an enhanced release after exposure to an alternating magnetic field, and a complete release of the encapsulated drug after the synergic effect of low pH (4.5), increased concentration of hydrogen peroxide (50 µM), and increased temperature due to the applied magnetic field. In addition, these nanovectors presented excellent specific absorption rate values (up to 1345 W g-1) considering the size of the magnetic component, rendering them suitable as potential hyperthermia agents. The presented nanovectors were progressively internalized in U-87 MG cells and in their acidic compartments (i.e., lysosomes and late endosomes) without affecting the viability of the cells, and their ability to cross the blood-brain barrier was preliminarily investigated using an in vitro brain endothelial cell-model. When stimulated with alternating magnetic fields (20 mT, 750 kHz), the nanovectors demonstrated their ability to induce mild hyperthermia (43 °C) and strong anticancer effects against U-87 MG cells (scarce survival of cells characterized by low proliferation rates and high apoptosis levels). The optimal anticancer effects resulted from the synergic combination of hyperthermia chronic stimulation and the controlled temozolomide release, highlighting the potential of the proposed drug-loaded lipid magnetic nanovectors for treatment of glioblastoma multiforme.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Hipertermia Inducida/métodos , Lípidos/química , Nanopartículas de Magnetita/química , Barrera Hematoencefálica , Línea Celular Tumoral , Proliferación Celular , Sistemas de Liberación de Medicamentos , Endosomas/química , Humanos , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Lisosomas/química , Magnetismo , Nanopartículas/química , Temperatura
2.
Int J Pharm ; 510(2): 508-15, 2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-26827919

RESUMEN

Nanocapsules and nanoparticles play an essential role in the delivery of pharmaceutical agents in modern era, since they can be delivered in specific tissues and cells. Natural polymers, such as cellulose acetate, are becoming very important due to their availability, biocompatibility, absence of toxicity and biodegradability. In parallel, essential oils are having continuous growth in biomedical applications due to the inherent active compounds that they contain. A characteristic example is lemongrass oil that has exceptional antimicrobial properties. In this work, nanocapsules of cellulose acetate with lemongrass oil were developed with the solvent/anti-solvent method with resulting diameter tailored between 95 and 185nm. Various physico-chemical and surface analysis techniques were employed to investigate the formation of the nanocapsules. These all-natural nanocapsules found to well bioadhere to mucous membranes and to have very good antimicrobial properties at little concentrations against Escherichia coli and Staphylococcus aureus.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Celulosa/análogos & derivados , Nanocápsulas/química , Aceites Volátiles/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Terpenos/química , Terpenos/farmacología , Celulosa/química , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Aceites Volátiles/farmacología , Solventes/química , Staphylococcus aureus/efectos de los fármacos
3.
J Mater Sci Mater Med ; 25(10): 2411-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24573456

RESUMEN

We have fabricated anodic porous alumina from thin films (100/500 nm) of aluminium deposited on technological substrates of silicon/glass, and investigated the feasibility of this material as a surface for the development of analytical biosensors aiming to assess the status of living cells. To this goal, porous alumina surfaces with fixed pitch and variable pore size were analyzed for various functionalities. Gold coated (about 25 nm) alumina revealed surface enhanced Raman scattering increasing with the decrease in wall thickness, with factor up to values of approximately 10(4) with respect to the flat gold surface. Bare porous alumina was employed for micro-patterning and observation via fluorescence images of dye molecules, which demonstrated the surface capability for a drug-loading device. NIH-3T3 fibroblast cells were cultured in vitro and examined after 2 days since seeding, and no significant (P > 0.05) differences in their proliferation were observed on porous and non-porous materials. The effect on cell cultures of pore size in the range of 50-130 nm--with pore pitch of about 250 nm--showed no significant differences in cell viability and similar levels in all cases as on a control substrate. Future work will address combination of all above capabilities into a single device.


Asunto(s)
Óxido de Aluminio/química , Técnicas Biosensibles , Técnicas de Cultivo de Célula/instrumentación , Animales , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Adhesión Celular , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Estudios de Factibilidad , Oro/química , Ensayo de Materiales , Ratones , Células 3T3 NIH , Nanoestructuras/química , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA