Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Ecol Evol ; 6(1): 63-76, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34824389

RESUMEN

Hundreds of cell types form the vertebrate brain but it is largely unknown how similar cellular repertoires are between or within species or how cell-type diversity evolves. To examine cell-type diversity across and within species, we performed single-cell RNA sequencing of ~130,000 hypothalamic cells from zebrafish (Danio rerio) and surface and cave morphs of Mexican tetra (Astyanax mexicanus). We found that over 75% of cell types were shared between zebrafish and Mexican tetra, which diverged from a common ancestor over 150 million years ago. Shared cell types displayed shifts in paralogue expression that were generated by subfunctionalization after genome duplication. Expression of terminal effector genes, such as neuropeptides, was more conserved than the expression of their associated transcriptional regulators. Species-specific cell types were enriched for the expression of species-specific genes and characterized by the neofunctionalization of expression patterns of members of recently expanded or contracted gene families. Comparisons between surface and cave morphs revealed differences in immune repertoires and transcriptional changes in neuropeptidergic cell types associated with genomic differences. The single-cell atlases presented here are a powerful resource to explore hypothalamic cell types and reveal how gene family evolution and shifts in paralogue expression contribute to cellular diversity.


Asunto(s)
Characidae , Pez Cebra , Animales , Evolución Biológica , Cuevas , Characidae/genética , Hipotálamo , Pez Cebra/genética
2.
Nat Neurosci ; 22(9): 1477-1492, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31358991

RESUMEN

Animals have evolved specialized neural circuits to defend themselves from pain- and injury-causing stimuli. Using a combination of optical, behavioral and genetic approaches in the larval zebrafish, we describe a novel role for hypothalamic oxytocin (OXT) neurons in the processing of noxious stimuli. In vivo imaging revealed that a large and distributed fraction of zebrafish OXT neurons respond strongly to noxious inputs, including the activation of damage-sensing TRPA1 receptors. OXT population activity reflects the sensorimotor transformation of the noxious stimulus, with some neurons encoding sensory information and others correlating more strongly with large-angle swims. Notably, OXT neuron activation is sufficient to generate this defensive behavior via the recruitment of brainstem premotor targets, whereas ablation of OXT neurons or loss of the peptide attenuates behavioral responses to TRPA1 activation. These data highlight a crucial role for OXT neurons in the generation of appropriate defensive responses to noxious input.


Asunto(s)
Tronco Encefálico/fisiología , Vías Nerviosas/fisiología , Nocicepción/fisiología , Nociceptores/fisiología , Animales , Tronco Encefálico/citología , Hipotálamo/citología , Hipotálamo/fisiología , Vías Nerviosas/citología , Nociceptores/citología , Oxitocina , Pez Cebra
3.
Development ; 142(6): 1113-24, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25725064

RESUMEN

Loss of neurons that express the neuropeptide hypocretin (Hcrt) has been implicated in narcolepsy, a debilitating disorder characterized by excessive daytime sleepiness and cataplexy. Cell replacement therapy, using Hcrt-expressing neurons generated in vitro, is a potentially useful therapeutic approach, but factors sufficient to specify Hcrt neurons are unknown. Using zebrafish as a high-throughput system to screen for factors that can specify Hcrt neurons in vivo, we identified the LIM homeobox transcription factor Lhx9 as necessary and sufficient to specify Hcrt neurons. We found that Lhx9 can directly induce hcrt expression and we identified two potential Lhx9 binding sites in the zebrafish hcrt promoter. Akin to its function in zebrafish, we found that Lhx9 is sufficient to specify Hcrt-expressing neurons in the developing mouse hypothalamus. Our results elucidate an evolutionarily conserved role for Lhx9 in Hcrt neuron specification that improves our understanding of Hcrt neuron development.


Asunto(s)
Separación Celular/métodos , Regulación de la Expresión Génica/fisiología , Hipotálamo/embriología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Clonación Molecular , Cartilla de ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Hipotálamo/metabolismo , Inmunohistoquímica , Ratones , Análisis por Micromatrices , Orexinas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Development ; 142(4): 633-43, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25670790

RESUMEN

Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a 'self-patterning' strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases.


Asunto(s)
Hipotálamo/citología , Neuronas/citología , Células Madre Pluripotentes/citología , Proteína Relacionada con Agouti/metabolismo , Arginina Vasopresina/metabolismo , Humanos , Hormonas Hipotalámicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melaninas/metabolismo , Neuropéptidos/metabolismo , Orexinas , Oxitocina/metabolismo , Hormonas Hipofisarias/metabolismo , Proopiomelanocortina/metabolismo , Hormona Liberadora de Tirotropina/metabolismo
5.
Curr Opin Neurobiol ; 30: 122-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25523356

RESUMEN

Mutations associated with psychiatric disease are being identified, but it remains unclear how the affected genes contribute to disease. Zebrafish is an emerging model to study psychiatric disease genes with a rich repertoire of phenotyping tools. Recent zebrafish research has uncovered potential developmental phenotypes for genes associated with psychiatric disorders, while drug screens have behaviorally characterized small molecules and identified new classes of drugs. Behavioral studies have led to promising models for endophenotypes of psychiatric diseases. While further research is needed to firmly link these models to psychiatric disorders, they are valuable tools for phenotyping genetic mutations and drugs. Recently developed tools in genome editing and in vivo imaging promise additional insights into the processes disrupted by mutations in psychiatric disease genes.


Asunto(s)
Antipsicóticos/uso terapéutico , Predisposición Genética a la Enfermedad/genética , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/genética , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Endofenotipos , Humanos , Mutación/genética , Pez Cebra
6.
J Neurophysiol ; 108(1): 148-59, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22490555

RESUMEN

The molecular and physiological basis of the touch-unresponsive zebrafish mutant fakir has remained elusive. Here we report that the fakir phenotype is caused by a missense mutation in the gene encoding voltage-gated calcium channel 2.1b (CACNA1Ab). Injection of RNA encoding wild-type CaV2.1 restores touch responsiveness in fakir mutants, whereas knockdown of CACNA1Ab via morpholino oligonucleotides recapitulates the fakir mutant phenotype. Fakir mutants display normal current-evoked synaptic communication at the neuromuscular junction but have attenuated touch-evoked activation of motor neurons. NMDA-evoked fictive swimming is not affected by the loss of CaV2.1b, suggesting that this channel is not required for motor pattern generation. These results, coupled with the expression of CACNA1Ab by sensory neurons, suggest that CaV2.1b channel activity is necessary for touch-evoked activation of the locomotor network in zebrafish.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Activación del Canal Iónico/genética , Tacto/genética , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Vías Aferentes/fisiología , Animales , Animales Modificados Genéticamente , Bungarotoxinas/metabolismo , Canales de Calcio Tipo N/genética , Curare/farmacología , Relación Dosis-Respuesta a Droga , Embrión no Mamífero , Reacción de Fuga/efectos de los fármacos , Reacción de Fuga/fisiología , Potenciales Evocados/genética , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Leucina/genética , Locomoción/efectos de los fármacos , Locomoción/genética , Modelos Moleculares , Morfolinas/farmacología , Actividad Motora/genética , Neuronas Motoras/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Mutagénesis Sitio-Dirigida/métodos , Mutación/genética , Mutación Missense/genética , Red Nerviosa/fisiología , Antagonistas Nicotínicos/farmacología , Médula Espinal/citología , Médula Espinal/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Tacto/fisiología , Valina/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Dev Neurobiol ; 72(3): 373-85, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21567979

RESUMEN

The larval zebrafish has emerged asa vertebrate model system amenable to small molecule screens for probing diverse biological pathways. Two large-scale small molecule screens examined the effects of thousands of drugs on larval zebrafish sleep/wake and photomotor response behaviors. Both screens identified hundreds of molecules that altered zebrafish behavior in distinct ways. The behavioral profiles induced by these small molecules enabled the clustering of compounds according to shared phenotypes. This approach identified regulators of sleep/wake behavior and revealed the biological targets for poorly characterized compounds. Behavioral screening for neuroactive small molecules in zebrafish is an attractive complement to in vitro screening efforts, because the complex interactions in the vertebrate brain can only be revealed in vivo.


Asunto(s)
Conducta Animal/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Pez Cebra , Animales , Conducta Animal/fisiología , Estimulantes del Sistema Nervioso Central/farmacología , Evaluación Preclínica de Medicamentos/métodos , Humanos , Sueño/efectos de los fármacos , Sueño/fisiología , Vigilia/efectos de los fármacos , Vigilia/fisiología , Pez Cebra/fisiología
8.
J Neurosci ; 28(40): 10102-10, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18829968

RESUMEN

Transient receptor potential (TRP) ion channels have been implicated in detecting chemical, thermal, and mechanical stimuli in organisms ranging from mammals to Caenorhabditis elegans. It is well established that TRPA1 detects and mediates behavioral responses to chemical irritants. However, the role of TRPA1 in detecting thermal and mechanical stimuli is controversial. To further clarify the functions of TRPA1 channels in vertebrates, we analyzed their roles in zebrafish. The two zebrafish TRPA1 paralogs are expressed in sensory neurons and are activated by several chemical irritants in vitro. High-throughput behavioral analyses of trpa1a and trpa1b mutant larvae indicate that TRPA1b is necessary for behavioral responses to these chemical irritants. However, TRPA1 paralogs are not required for behavioral responses to temperature changes or for mechanosensory hair cell function in the inner ear or lateral line. These results support a role for zebrafish TRPA1 in chemical but not thermal or mechanical sensing, and establish a high-throughput system to identify genes and small molecules that modulate chemosensation, thermosensation, and mechanosensation.


Asunto(s)
Células Quimiorreceptoras/fisiología , Células Ciliadas Auditivas/fisiología , Canales Iónicos/fisiología , Mecanorreceptores/fisiología , Termorreceptores/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Conducta Animal/fisiología , Línea Celular , Células Cultivadas , Femenino , Tamización de Portadores Genéticos , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/efectos de los fármacos , Humanos , Canales Iónicos/genética , Larva/genética , Larva/fisiología , Datos de Secuencia Molecular , Planta de la Mostaza/toxicidad , Mutación , Aceites de Plantas/toxicidad , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio , Xenopus laevis , Pez Cebra , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA