Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33837744

RESUMEN

The development of a targeted therapy would significantly improve the treatment of periodontitis and its associated diseases including Alzheimer's disease, rheumatoid arthritis, and cardiovascular diseases. Glutaminyl cyclases (QCs) from the oral pathogens Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia represent attractive target enzymes for small-molecule inhibitor development, as their action is likely to stabilize essential periplasmic and outer membrane proteins by N-terminal pyroglutamination. In contrast to other microbial QCs that utilize the so-called type I enzymes, these oral pathogens possess sequences corresponding to type II QCs, observed hitherto only in animals. However, whether differences between these bacteroidal QCs and animal QCs are sufficient to enable development of selective inhibitors is not clear. To learn more, we recombinantly expressed all three QCs. They exhibit comparable catalytic efficiencies and are inhibited by metal chelators. Crystal structures of the enzymes from P. gingivalis (PgQC) and T. forsythia (TfQC) reveal a tertiary structure composed of an eight-stranded ß-sheet surrounded by seven α-helices, typical of animal type II QCs. In each case, an active site Zn ion is tetrahedrally coordinated by conserved residues. Nevertheless, significant differences to mammalian enzymes are found around the active site of the bacteroidal enzymes. Application of a PgQC-selective inhibitor described here for the first time results in growth inhibition of two P. gingivalis clinical isolates in a dose-dependent manner. The insights gained by these studies will assist in the development of highly specific small-molecule bacteroidal QC inhibitors, paving the way for alternative therapies against periodontitis and associated diseases.


Asunto(s)
Aminoaciltransferasas/química , Periodontitis/microbiología , Porphyromonas gingivalis/enzimología , Prevotella intermedia/enzimología , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/genética , Aminoaciltransferasas/ultraestructura , Dominio Catalítico/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Periodontitis/tratamiento farmacológico , Periodontitis/genética , Porphyromonas gingivalis/patogenicidad , Prevotella intermedia/patogenicidad , Estructura Terciaria de Proteína/efectos de los fármacos , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/metabolismo , Tannerella forsythia/enzimología , Tannerella forsythia/patogenicidad
2.
J Mol Biol ; 379(5): 966-80, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18486145

RESUMEN

Mammalian glutaminyl cyclase isoenzymes (isoQCs) were identified. The analysis of the primary structure of human isoQC (h-isoQC) revealed conservation of the zinc-binding motif of the human QC (hQC). In contrast to hQC, h-isoQC carries an N-terminal signal anchor. The cDNAs of human and murine isoQCs were isolated and h-isoQC, lacking the N-terminal signal anchor and the short cytosolic tail, was expressed as a fusion protein in Escherichia coli. h-isoQC exhibits 10fold lower activity compared to hQC. Similar to hQC, h-isoQC was competitively inhibited by imidazoles and cysteamines. Inactivation by metal chelators suggests a conserved metal-dependent catalytic mechanism of both isoenzymes. A comparison of the expression pattern of m-isoQC and murine QC revealed ubiquitous expression of both enzymes. However, murine QC transcript formation was higher in neuronal tissue, whereas the amount of m-isoQC transcripts did not vary significantly between different organs. h-isoQC was exclusively localized within the Golgi complex, obviously retained by the N-terminus. Similar resident enzymes of the Golgi complex are the glycosyltransferases. Golgi apparatus retention implies a "housekeeping" protein maturation machinery conducting glycosylation and pyroglutamyl formation. For these enzymes, apparently similar strategies evolved to retain the proteins in the Golgi complex.


Asunto(s)
Aminoaciltransferasas/aislamiento & purificación , Aminoaciltransferasas/metabolismo , Aparato de Golgi/enzimología , Secuencia de Aminoácidos , Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Animales , Secuencia de Bases , Línea Celular , ADN Complementario/genética , Glicosilación , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Cinética , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/enzimología , Distribución Tisular
3.
Biol Chem ; 388(2): 145-53, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17261077

RESUMEN

Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamic acid at the N-terminus of several peptides and proteins. On the basis of the amino acid sequence of Carica papaya QC, we identified cDNAs of the putative counterparts from Solanum tuberosum and Arabidopsis thaliana. Upon expression of the corresponding cDNAs from both plants via the secretory pathway of Pichia pastoris, two active QC proteins were isolated. The specificity of the purified proteins was assessed using various substrates with different amino acid composition and length. Highest specificities were observed with substrates possessing large hydrophobic residues adjacent to the N-terminal glutamine and for fluorogenic dipeptide surrogates. However, compared to Carica papaya QC, the specificity constants were approximately one order of magnitude lower for most of the QC substrates analyzed. The QCs also catalyzed the conversion of N-terminal glutamic acid to pyroglutamic acid, but with approximately 10(5)- to 10(6)-fold lower specificity. The ubiquitous distribution of plant QCs prompted a search for potential substrates in plants. Based on database entries, numerous proteins, e.g., pathogenesis-related proteins, were found that carry a pyroglutamate residue at the N-terminus, suggesting QC involvement. The putative relevance of QCs and pyroglutamic acid for plant defense reactions is discussed.


Asunto(s)
Aminoaciltransferasas , Arabidopsis/enzimología , Solanum tuberosum/enzimología , Secuencia de Aminoácidos , Aminoaciltransferasas/química , Aminoaciltransferasas/aislamiento & purificación , Aminoaciltransferasas/fisiología , Carica/enzimología , Catálisis , Dicroismo Circular , ADN Complementario/genética , Activación Enzimática/fisiología , Regulación Enzimológica de la Expresión Génica , Ácido Glutámico/química , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/fisiología , Ácido Pirrolidona Carboxílico/síntesis química , Ácido Pirrolidona Carboxílico/química , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sensibilidad y Especificidad , Alineación de Secuencia , Espectroscopía Infrarroja por Transformada de Fourier
4.
Biochemistry ; 44(40): 13415-24, 2005 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-16201766

RESUMEN

Murine glutaminyl cyclase (mQC) was identified in the insulinoma cell line beta-TC 3 by determination of enzymatic activity and RT-PCR. The cloned cDNA was expressed in the secretory pathway of the methylotrophic yeast Pichia pastoris and purified after fermentation using a new three-step protocol. mQC converted a set of various substrates with very similar specificity to human QC, indicating a virtually identical catalytic competence. Furthermore, mQC was competitively inhibited by imidazole derivatives. A screen of thiol reagents revealed cysteamine as a competitive inhibitor of mQC bearing a Ki value of 42 +/-2 microM. Substitution of the thiol or the amino group resulted in a drastic loss of inhibitory potency. The pH dependence of catalysis and inhibition support that an uncharged nitrogen of the inhibitors and the substrate is necessary in order to bind to the active site of the enzyme. In contrast to imidazole and cysteamine, the heterocyclic chelators 1,10-phenanthroline, 2,6-dipicolinic acid, and 8-hydroxyquinoline inactivated mQC in a time-dependent manner. In addition, citric acid inactivated the enzyme at pH 5.5. Inhibition by citrate was abolished in the presence of zinc ions. A determination of the metal content by total reflection X-ray fluorescence spectrometry and atomic absorption spectroscopy in mQC revealed stoichiometric amounts of zinc bound to the protein. Metal ion depletion appeared to have no significant effect on protein structure as shown by fluorescence spectroscopy, suggesting a catalytic role of zinc. The results demonstrate that mQC and probably all animal QCs are zinc-dependent catalysts. Apparently, during evolution from an ancestral protease, a switch occurred in the catalytic mechanism which is mainly based on a loss of one metal binding site.


Asunto(s)
Aminoaciltransferasas/química , Zinc/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catálisis , Bovinos , Ácido Cítrico/farmacología , Clonación Molecular , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Evolución Molecular , Humanos , Concentración de Iones de Hidrógeno , Imidazoles/química , Cinética , Ratones , Modelos Químicos , Datos de Secuencia Molecular , Nitrógeno/química , Fotones , Pichia/metabolismo , Proteínas Recombinantes/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Espectrofotometría , Especificidad por Sustrato , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA