Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 8602, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32451387

RESUMEN

Anaemia therapy or perisurgical support of erythropoiesis often require both, EPO and iron medication. However, excessive iron medication can result in iron overload and it is challenging to control haemoglobin levels in a desired range. To support this task, we develop a biomathematical model to simulate EPO- and iron medication in humans. We combine our previously established model of human erythropoiesis including comprehensive pharmacokinetic models of EPO applications with a newly developed model of iron metabolism including iron supplementation. Equations were derived by translating known biological mechanisms into ordinary differential equations. Qualitative model behaviour is studied in detail considering a variety of interventions such as bleeding, iron malnutrition and medication. The model can explain time courses of erythrocytes, reticulocytes, haemoglobin, haematocrit, red blood cells, EPO, serum iron, ferritin, transferrin saturation, and transferrin under a variety of scenarios including EPO and iron application into healthy volunteers or chemotherapy patients. Unknown model parameters were determined by fitting the predictions of the model to time series data from literature. We demonstrate how the model can be used to make predictions of untested therapy options such as cytotoxic chemotherapy supported by iron and EPO. Following our ultimate goal of establishing a model of anaemia treatment in chronic kidney disease, we aim at translating our model to this pathological condition in the near future.


Asunto(s)
Eritropoyesis/fisiología , Hierro/metabolismo , Modelos Biológicos , Anemia/tratamiento farmacológico , Suplementos Dietéticos , Eritrocitos/citología , Eritrocitos/metabolismo , Eritropoyetina/metabolismo , Eritropoyetina/uso terapéutico , Ferritinas/análisis , Hemoglobinas/análisis , Humanos , Hierro/administración & dosificación
2.
Mycoses ; 63(7): 717-728, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32301159

RESUMEN

BACKGROUND: An alarming increase in recalcitrant dermatophytosis has been witnessed in India over the past decade. Drug resistance may play a major role in this scenario. OBJECTIVES: The aim of the present study was to determine the prevalence of in vitro resistance to terbinafine, itraconazole and voriconazole in dermatophytes, and to identify underlying mutations in the fungal squalene epoxidase (SQLE) gene. PATIENTS/METHODS: We analysed skin samples from 402 patients originating from eight locations in India. Fungi were identified by microbiological and molecular methods, tested for antifungal susceptibility (terbinafine, itraconazole, voriconazole), and investigated for missense mutations in SQLE. RESULTS: Trichophyton (T.) mentagrophytes internal transcribed spacer (ITS) Type VIII was found in 314 (78%) samples. Eighteen (5%) samples harboured species identified up to the T interdigitale/mentagrophytes complex, and T rubrum was detected in 19 (5%) samples. 71% of isolates were resistant to terbinafine. The amino acid substitution Phe397Leu in the squalene epoxidase of resistant T mentagrophytes was highly prevalent (91%). Two novel substitutions in resistant Trichophyton strains, Ser395Pro and Ser443Pro, were discovered. The substitution Ala448Thr was found in terbinafine-sensitive and terbinafine-resistant isolates but was associated with increased MICs of itraconazole and voriconazole. CONCLUSIONS: The high frequencies of terbinafine resistance in dermatophytes are worrisome and demand monitoring and further research. Squalene epoxidase substitutions between Leu393 and Ser443 could serve as markers of resistance in the future.


Asunto(s)
Antifúngicos/uso terapéutico , Arthrodermataceae/efectos de los fármacos , Farmacorresistencia Fúngica Múltiple/genética , Proteínas Fúngicas/genética , Adolescente , Adulto , Anciano , Arthrodermataceae/clasificación , Arthrodermataceae/enzimología , Niño , Femenino , Humanos , India , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mutación Missense , Escualeno-Monooxigenasa/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA