Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Econ Entomol ; 111(3): 1048-1055, 2018 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-29529269

RESUMEN

Lethal and sublethal effects of refined soybean oil, imidacloprid, and abamectin on Tamarixia triozae (Burks; Hymenoptera: Eulophidae) were assessed after exposure of the eggs, larvae, and pupae of this parasitoid to three concentrations of these active substances: the LC50 for fourth-instar Bactericera cockerelli (Sulc.; Hemiptera: Triozidae) and 50% and 100% of the minimum field-registered concentration (MiFRC). Soybean oil caused 26-61% mortality in T. triozae eggs and 6-19% in larvae; mortality in both eggs and larvae was ≤19% for imidacloprid and 4-100% for abamectin. All three compounds caused <18% mortality of T. triozae pupae, with the exception of the abamectin 50% (47%) and 100% (72%) MiFRC. The mortality of larvae and pupae derived from treated eggs was ≤39% for all three insecticides, and that of pupae derived from treated larvae was ≤10%. In general, emergence of adults developed from treated eggs, larvae, and pupae was affected more by abamectin than by the other treatments. The proportion of females derived from all three development stages was not affected by treatment with the compounds, except when the parasitoid was treated as larvae with the soybean oil 100 and 50% MiFRC (66 and 68%, respectively) or when treated as pupae with the imidacloprid LC50 and 100% MiFRC (~60%). Female longevity was generally higher than that of males. The use of imidacloprid, soybean oil, and abamectin in combination with T. triozae for pest control may be effective when the parasitoid is in the pupal stage because this stage is less susceptible than other immature stages.


Asunto(s)
Interacciones Huésped-Parásitos/efectos de los fármacos , Insecticidas/toxicidad , Ivermectina/análogos & derivados , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Control Biológico de Vectores , Aceite de Soja/toxicidad , Avispas/efectos de los fármacos , Animales , Femenino , Hemípteros/crecimiento & desarrollo , Hemípteros/parasitología , Control de Insectos , Ivermectina/toxicidad , Larva/efectos de los fármacos , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/parasitología , Óvulo/efectos de los fármacos , Pupa/efectos de los fármacos , Avispas/crecimiento & desarrollo , Avispas/fisiología
2.
Pest Manag Sci ; 64(10): 1001-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18418831

RESUMEN

BACKGROUND: Resistance to spinosad and methoxyfenozide has been studied in several insect pests, but there is a lack of information on Spodoptera exigua (Hübner) in Mexico. Therefore, evidence for the development of resistance in this pest to both compounds was examined. The effects of methoxyfenozide on reproductive parameters of S. exigua adults were also determined. RESULTS: Third instars from a field population were exposed for 24 h to the LC(50) of spinosad or methoxyfenozide for over six generations (G(2)-G(7)). No significant reduction in susceptibility to either compound was detected for up to five generations. In G(7), LC(50) values for insects exposed to spinosad and methoxyfenozide were respectively 2.75-fold and 1.25-fold greater than for G(1) larvae. Oral treatment with methoxyfenozide reduced the fecundity and fertility of G(7) adults, confirming sublethal effects on reproduction. Finally, five populations (Se-La Floriza, Se-Lazareto, Se-Bachigualato, Se-Los Agustinos and Se-Villa de Arista) of S. exigua were collected from fields in three states of Mexico for resistance monitoring to spinosad and methoxyfenozide. With the exception of Se-Villa de Arista, the other populations showed significant resistance to spinosad, with resistance ratios between 16- and 37-fold, compared with a susceptible laboratory colony. In contrast, only one population (Se-Lazareto) showed significant resistance to methoxyfenozide (13-fold). CONCLUSION: Resistance management programmes should be established, particularly in areas where S. exigua has developed resistance to spinosad.


Asunto(s)
Beta vulgaris , Hidrazinas/farmacología , Resistencia a los Insecticidas , Insecticidas/farmacología , Hormonas Juveniles/farmacología , Macrólidos/farmacología , Spodoptera/efectos de los fármacos , Animales , Combinación de Medicamentos , Control de Insectos , México , Reproducción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA