Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Elife ; 102021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34424198

RESUMEN

Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phytophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway that antagonizes antimicrobial autophagy at the pathogen interface. Here, we show that PexRD54 induces autophagosome formation by bridging vesicles decorated by the small GTPase Rab8a with autophagic compartments labeled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing specific trafficking pathways underpin selective autophagy. By subverting Rab8a-mediated vesicle trafficking, PexRD54 utilizes lipid droplets to facilitate biogenesis of autophagosomes diverted to pathogen feeding sites. Altogether, we show that PexRD54 mimics starvation-induced autophagy to subvert endomembrane trafficking at the host-pathogen interface, revealing how effectors bridge distinct host compartments to expedite colonization.


With its long filaments reaching deep inside its prey, the tiny fungi-like organism known as Phytophthora infestans has had a disproportionate impact on human history. Latching onto plants and feeding on their cells, it has caused large-scale starvation events such as the Irish or Highland potato famines. Many specialized proteins allow the parasite to accomplish its feat. For instance, PexRD54 helps P. infestans hijack a cellular process known as autophagy. Healthy cells use this 'self-eating' mechanism to break down invaders or to recycle their components, for example when they require specific nutrients. The process is set in motion by various pathways of molecular events that result in specific sac-like 'vesicles' filled with cargo being transported to specialized compartments for recycling. PexRD54 can take over this mechanism by activating one of the plant autophagy pathways, directing cells to form autophagic vesicles that Phytophthora could then possibly use to feed on or to destroy antimicrobial components. How or why this is the case remains poorly understood. To examine these questions, Pandey, Leary et al. used a combination of genetic and microscopy techniques and tracked how PexRD54 alters autophagy as P. infestans infects a tobacco-related plant. The results show that PexRD54 works by bridging two proteins: one is present on cellular vesicles filled with cargo, and the other on autophagic structures surrounding the parasite. This allows PexRD54 to direct the vesicles to the feeding sites of P. infestans so the parasite can potentially divert nutrients. Pandey, Leary et al. then went on to develop a molecule called the AIM peptide, which could block autophagy by mimicking part of PexRD54. These results help to better grasp how a key disease affects crops, potentially leading to new ways to protect plants without the use of pesticides. They also shed light on autophagy: ultimately, a deeper understanding of this fundamental biological process could allow the development of plants which can adapt to changing environments.


Asunto(s)
Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Phytophthora infestans/fisiología , Proteínas de Plantas/genética , Solanum tuberosum/genética , Autofagia , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología
2.
Cell Microbiol ; 19(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27302335

RESUMEN

The oomycete pathogen Phytophthora infestans causes potato late blight, and as a potato and tomato specialist pathogen, is seemingly poorly adapted to infect plants outside the Solanaceae. Here, we report the unexpected finding that P. infestans can infect Arabidopsis thaliana when another oomycete pathogen, Albugo laibachii, has colonized the host plant. The behaviour and speed of P. infestans infection in Arabidopsis pre-infected with A. laibachii resemble P. infestans infection of susceptible potato plants. Transcriptional profiling of P. infestans genes during infection revealed a significant overlap in the sets of secreted-protein genes that are induced in P. infestans upon colonization of potato and susceptible Arabidopsis, suggesting major similarities in P. infestans gene expression dynamics on the two plant species. Furthermore, we found haustoria of A. laibachii and P. infestans within the same Arabidopsis cells. This Arabidopsis-A. laibachii-P. infestans tripartite interaction opens up various possibilities to dissect the molecular mechanisms of P. infestans infection and the processes occurring in co-infected Arabidopsis cells.


Asunto(s)
Arabidopsis/microbiología , Interacciones Microbianas , Oomicetos/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Oomicetos/genética , Solanum tuberosum/microbiología
3.
Plant Cell ; 24(8): 3420-34, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22885736

RESUMEN

Plant pathogens secrete effector proteins to modulate plant immunity and promote host colonization. Plant nucleotide binding leucine-rich repeat (NB-LRR) immunoreceptors recognize specific pathogen effectors directly or indirectly. Little is known about how NB-LRR proteins recognize effectors of filamentous plant pathogens, such as Phytophthora infestans. AVR2 belongs to a family of 13 sequence-divergent P. infestans RXLR effectors that are differentially recognized by members of the R2 NB-LRR family in Solanum demissum. We report that the putative plant phosphatase BSU-LIKE PROTEIN1 (BSL1) is required for R2-mediated perception of AVR2 and resistance to P. infestans. AVR2 associates with BSL1 and mediates the interaction of BSL1 with R2 in planta, possibly through the formation of a ternary complex. Strains of P. infestans that are virulent on R2 potatoes express an unrecognized form, Avr2-like (referred to as A2l). A2L can still interact with BSL1 but does not promote the association of BSL1 with R2. Our findings show that recognition of the P. infestans AVR2 effector by the NB-LRR protein R2 requires the putative phosphatase BSL1. This reveals that, similar to effectors of phytopathogenic bacteria, recognition of filamentous pathogen effectors can be mediated via a host protein that interacts with both the effector and the NB-LRR immunoreceptor.


Asunto(s)
Resistencia a la Enfermedad , Monoéster Fosfórico Hidrolasas/metabolismo , Phytophthora infestans/patogenicidad , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Solanum/microbiología , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Interacciones Huésped-Patógeno , Inmunoprecipitación , Proteínas Repetidas Ricas en Leucina , Datos de Secuencia Molecular , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/inmunología , Phytophthora infestans/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Plásmidos/genética , Plásmidos/metabolismo , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Proteínas/genética , Proteínas/inmunología , Proteínas/metabolismo , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Solanum/enzimología , Solanum/inmunología , Especificidad por Sustrato , Técnicas del Sistema de Dos Híbridos
4.
PLoS Pathog ; 8(8): e1002875, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927814

RESUMEN

Phytopathogenic oomycetes, such as Phytophthora infestans, secrete an arsenal of effector proteins that modulate plant innate immunity to enable infection. We describe CRN8, a host-translocated effector of P. infestans that has kinase activity in planta. CRN8 is a modular protein of the CRN effector family. The C-terminus of CRN8 localizes to the host nucleus and triggers cell death when the protein is expressed in planta. Cell death induction by CRN8 is dependent on its localization to the plant nucleus, which requires a functional nuclear localization signal (NLS). The C-terminal sequence of CRN8 has similarity to a serine/threonine RD kinase domain. We demonstrated that CRN8 is a functional RD kinase and that its auto-phosphorylation is dependent on an intact catalytic site. Co-immunoprecipitation experiments revealed that CRN8 forms a dimer or multimer. Heterologous expression of CRN8 in planta resulted in enhanced virulence by P. infestans. In contrast, in planta expression of the dominant-negative CRN8(R469A;D470A) resulted in reduced P. infestans infection, further implicating CRN8 in virulence. Overall, our results indicate that similar to animal parasites, plant pathogens also translocate biochemically active kinase effectors inside host cells.


Asunto(s)
Núcleo Celular/enzimología , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/microbiología , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Solanum tuberosum/microbiología , Núcleo Celular/genética , Phytophthora infestans/enzimología , Phytophthora infestans/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/genética , Solanum tuberosum/inmunología , Nicotiana/metabolismo , Nicotiana/microbiología
5.
Plant Physiol ; 154(4): 1794-804, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20940351

RESUMEN

Since the leaf apoplast is a primary habitat for many plant pathogens, apoplastic proteins are potent, ancient targets for apoplastic effectors secreted by plant pathogens. So far, however, only a few apoplastic effector targets have been identified and characterized. Here, we discovered that the papain-like cysteine protease C14 is a new common target of EPIC1 and EPIC2B, two apoplastic, cystatin-like proteins secreted by the potato (Solanum tuberosum) late blight pathogen Phytophthora infestans. C14 is a secreted protease of tomato (Solanum lycopersicum) and potato typified by a carboxyl-terminal granulin domain. The EPIC-C14 interaction occurs at a wide pH range and is stronger than the previously described interactions of EPICs with tomato defense proteases PIP1 and RCR3. The selectivity of the EPICs is also different when compared with the AVR2 effector of the fungal tomato pathogen Cladosporium fulvum, which targets PIP1 and RCR3, and only at apoplastic pH. Importantly, silencing of C14 increased susceptibility to P. infestans, demonstrating that this protease plays a role in pathogen defense. Although C14 is under conservative selection in tomato, it is under diversifying selection in wild potato species (Solanum demissum, Solanum verrucosum, and Solanum stoliniferum) that are the natural hosts of P. infestans. These data reveal a novel effector target in the apoplast that contributes to immunity and is under diversifying selection, but only in the natural host of the pathogen.


Asunto(s)
Péptido Hidrolasas/metabolismo , Phytophthora infestans/patogenicidad , Solanum/microbiología , Secuencia de Bases , Western Blotting , ADN de Plantas , Silenciador del Gen , Datos de Secuencia Molecular , Péptido Hidrolasas/genética , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solanum/enzimología
6.
New Phytol ; 179(2): 546-556, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19086184

RESUMEN

Many phytopathogenic bacteria inject virulence effector proteins into plant cells. To identify novel virulence effectors of the bacterial plant pathogen Xanthomonas, a worldwide collection of pepper (Capsicum annuum) pathogenic Xanthomonas strains was studied. Xanthomonas gardneri strains produced in pepper enhanced watersoaking, a phenotype that is typical of a compatible interaction. Transfer of X. gardneri library clones into a Xanthomonas euvesicatoria recipient strain revealed that enhanced watersoaking was attributable to avrHah1 (avirulence (avr) gene homologous to avrBs3 and hax2, No. 1), a novel avrBs3-like gene. avrHah1 is a novel member of the avrBs3 family that encodes tandemly arranged repeat units of both 34 and 35 amino acid lengths. Although AvrHah1 is only distantly related to AvrBs3, it was shown to trigger a Bs3-dependent hypersensitive response (HR). When fused to a nuclear export signal, AvrHah1 is no longer capable of triggering a Bs3 HR, indicating that nuclear targeting of AvrHah1 is crucial to its recognition. Phylogenetic analysis revealed that, although AvrBs3 and AvrHah1 are only distantly related, they share blocks of high homology within potentially solvent-exposed repeat units. Thus, these data suggest that the recognition specificity of AvrBs3-like proteins is predominantly determined by solvent-exposed residues, rather than by overall homology or repeat unit length.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología , Xanthomonas/metabolismo , Xanthomonas/patogenicidad , Proteínas Bacterianas/genética , Capsicum/genética , Capsicum/metabolismo , Capsicum/microbiología , Medicamentos Herbarios Chinos , Regulación Bacteriana de la Expresión Génica/fisiología , Genotipo , Datos de Secuencia Molecular , Mutación , Hojas de la Planta/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología , Virulencia
7.
Mol Plant Microbe Interact ; 18(11): 1215-25, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16353556

RESUMEN

The tomato Bs4 disease resistance gene mediates recognition of avrBs4-expressing strains of the bacterial spot pathogen Xanthomonas campestris pv. vesicatoria to give a hypersensitive response (HR). Here, we present the characterization of the Bs4 promoter and its application for low-level expression of bacterial type III effector proteins in planta. Real-time polymerase chain reaction showed that Bs4 is constitutively expressed at low levels and that transcript abundance does not change significantly upon infection with avrBs4-containing xanthomonads. A 302-bp promoter fragment was found to be sufficient to promote Bs4 gene function. Previous studies have shown that high, constitutive in planta expression of avrBs3 (AvrBs3 and AvrBs4 proteins are 96.6% identical) via the Cauliflower mosaic virus 35S (35S) promoter triggers a Bs4-dependent HR whereas X. campestris pv. vesicatoria-mediated delivery of AvrBs3 into the plant cytoplasm does not. Here, we demonstrate that, when expressed under control of the weak Bs4 promoter, avrBs3 does not trigger a Bs4-dependent HR whereas avrBs4 does. In contrast, the pepper Bs3 gene, which mediates recognition of AvrBs3- but not AvrBs4-delivering xanthomonads, retains its recognition specificity even if avrBs4 was expressed in planta from the strong 35S promoter. Importantly, Bs4 promoter-driven expression of hax3, hax4 (two recently isolated avrBs3-like genes), avrBs3, and avrBs4 resulted in identical reactions as observed upon infection with X. campestris pv. vesicatoria strains that express the respective avr gene, suggesting that the protein levels expressed under control of the Bs4 promoter are similar to those that are translocated by the bacterial type III secretion system.


Asunto(s)
Proteínas Bacterianas/fisiología , Capsicum/genética , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Solanum lycopersicum/genética , Xanthomonas campestris/patogenicidad , Proteínas Bacterianas/genética , Secuencia de Bases , Capsicum/microbiología , Clonación Molecular/métodos , ADN de Plantas , Vectores Genéticos , Solanum lycopersicum/microbiología , Datos de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Solanum/genética , Solanum/microbiología , Especificidad de la Especie , Nicotiana/genética , Nicotiana/microbiología , Efectores Tipo Activadores de la Transcripción
8.
Trends Plant Sci ; 7(9): 392-8, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12234730

RESUMEN

Innate immunity in plants and animals shares many structural and functional homologies, which suggests an ancient origin of cellular defense mechanisms in both kingdoms. Pathogen sensing in animal innate immunity is mediated by Toll-like receptors (TLRs). These receptors have TIR (Toll/interleukin-1 receptor) domains and leucine-rich repeats, which are modules also present in many plant resistance (R) proteins. Molecular analysis of transcripts encoding animal TLRs and Toll-like plant R proteins revealed many cases of alternative splicing. Recent studies of the tobacco N and the Arabidopsis RPS4 genes, both encoding Toll-like plant R proteins, showed that intron-deprived genes have reduced or no activity, suggesting that alternative splicing is a crucial component in these signaling pathways.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Drosophila , Glicoproteínas de Membrana/genética , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Drosophila/genética , Lino/genética , Prueba de Complementación Genética , Humanos , Inmunidad Innata/genética , Ratones , Enfermedades de las Plantas/genética , Receptores de Interleucina-1/genética , Transducción de Señal/genética , Solanum tuberosum/genética , Glycine max/genética , Nicotiana/genética , Receptores Toll-Like , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA