Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 6: 28821, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27353576

RESUMEN

Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.


Asunto(s)
Amoníaco/metabolismo , Antozoos/metabolismo , Eutrofización , Fosfatos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Amoníaco/análisis , Animales , Arrecifes de Coral , Curazao , Cinética , Nitrógeno/análisis , Nitrógeno/metabolismo , Fosfatos/análisis , Fósforo/análisis , Fósforo/metabolismo , Agua de Mar/análisis , Contaminantes Químicos del Agua/análisis
2.
Nature ; 488(7409): 73-7, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22859204

RESUMEN

The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.


Asunto(s)
Efecto Invernadero/historia , Temperatura , Clima Tropical , Animales , Regiones Antárticas , Atmósfera/química , Dióxido de Carbono/análisis , Respiración de la Célula , Ecosistema , Sedimentos Geológicos/química , Historia Antigua , Actividades Humanas , Lípidos/análisis , Modelos Teóricos , Fotosíntesis , Polen , Reproducibilidad de los Resultados , Estaciones del Año , Esporas/aislamiento & purificación , Árboles/crecimiento & desarrollo
3.
Nature ; 470(7335): 518-21, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21350483

RESUMEN

The potential for increased drought frequency and severity linked to anthropogenic climate change in the semi-arid regions of the southwestern United States (US) is a serious concern. Multi-year droughts during the instrumental period and decadal-length droughts of the past two millennia were shorter and climatically different from the future permanent, 'dust-bowl-like' megadrought conditions, lasting decades to a century, that are predicted as a consequence of warming. So far, it has been unclear whether or not such megadroughts occurred in the southwestern US, and, if so, with what regularity and intensity. Here we show that periods of aridity lasting centuries to millennia occurred in the southwestern US during mid-Pleistocene interglacials. Using molecular palaeotemperature proxies to reconstruct the mean annual temperature (MAT) in mid-Pleistocene lacustrine sediment from the Valles Caldera, New Mexico, we found that the driest conditions occurred during the warmest phases of interglacials, when the MAT was comparable to or higher than the modern MAT. A collapse of drought-tolerant C(4) plant communities during these warm, dry intervals indicates a significant reduction in summer precipitation, possibly in response to a poleward migration of the subtropical dry zone. Three MAT cycles ∼2 °C in amplitude occurred within Marine Isotope Stage (MIS) 11 and seem to correspond to the muted precessional cycles within this interglacial. In comparison with MIS 11, MIS 13 experienced higher precessional-cycle amplitudes, larger variations in MAT (4-6 °C) and a longer period of extended warmth, suggesting that local insolation variations were important to interglacial climatic variability in the southwestern US. Comparison of the early MIS 11 climate record with the Holocene record shows many similarities and implies that, in the absence of anthropogenic forcing, the region should be entering a cooler and wetter phase.


Asunto(s)
Clima , Sequías/historia , Calcio/análisis , Carbono/análisis , Dióxido de Carbono/análisis , Sequías/estadística & datos numéricos , Fósiles , Agua Dulce , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Calentamiento Global/estadística & datos numéricos , Historia Antigua , Actividades Humanas , New Mexico , Desarrollo de la Planta , Plantas/metabolismo , Polen/química , Lluvia , Estaciones del Año , Microbiología del Suelo , Temperatura , Factores de Tiempo
4.
Science ; 330(6006): 957-61, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21071667

RESUMEN

Temperatures in tropical regions are estimated to have increased by 3° to 5°C, compared with Late Paleocene values, during the Paleocene-Eocene Thermal Maximum (PETM, 56.3 million years ago) event. We investigated the tropical forest response to this rapid warming by evaluating the palynological record of three stratigraphic sections in eastern Colombia and western Venezuela. We observed a rapid and distinct increase in plant diversity and origination rates, with a set of new taxa, mostly angiosperms, added to the existing stock of low-diversity Paleocene flora. There is no evidence for enhanced aridity in the northern Neotropics. The tropical rainforest was able to persist under elevated temperatures and high levels of atmospheric carbon dioxide, in contrast to speculations that tropical ecosystems were severely compromised by heat stress.


Asunto(s)
Ecosistema , Calentamiento Global , Plantas , Árboles , Clima Tropical , Atmósfera , Biodiversidad , Dióxido de Carbono , Colombia , Extinción Biológica , Magnoliopsida , Polen , Esporas , Temperatura , Tiempo , Venezuela
5.
Science ; 304(5670): 584-7, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-15105500

RESUMEN

The 18S ribosomal DNA molecular phylogeny and lipid composition of over 120 marine diatoms showed that the capability to biosynthesize highly branched isoprenoid (HBI) alkenes is restricted to two specific phylogenetic clusters, which independently evolved in centric and pennate diatoms. The molecular record of C25 HBI chemical fossils in a large suite of well-dated marine sediments and petroleum revealed that the older cluster, composed of rhizosolenid diatoms, evolved 91.5 +/- 1.5 million years ago (Upper Turonian), enabling an accurate dating of the pace of diatom evolution that is unprecedented. The rapid rise of the rhizosolenid diatoms probably resulted from a major reorganization of the nutrient budget in the mid-Cretaceous oceans, triggered by plate tectonics.


Asunto(s)
Alquenos/análisis , Evolución Biológica , Diatomeas , Sedimentos Geológicos , Terpenos/análisis , Alquenos/metabolismo , ADN Ribosómico/genética , Diatomeas/clasificación , Diatomeas/genética , Diatomeas/metabolismo , Fósiles , Lípidos/biosíntesis , Datos de Secuencia Molecular , Petróleo , Filogenia , ARN Ribosómico 18S/genética , Terpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA