Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Adv Sci (Weinh) ; 11(7): e2307051, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38063804

RESUMEN

The plant hormone salicylic acid (SA) plays critical roles in plant innate immunity. Several SA derivatives and associated modification are identified, whereas the range and modes of action of SA-related metabolites remain elusive. Here, the study discovered 2,4-dihydroxybenzoic acid (2,4-DHBA) and its glycosylated form as native SA derivatives in plants whose accumulation is largely induced by SA application and Ps. camelliae-sinensis (Pcs) infection. CsSH1, a 4/5-hydroxylase, catalyzes the hydroxylation of SA to 2,4-DHBA, and UDP-glucosyltransferase UGT95B17 catalyzes the formation of 2,4-DHBA glucoside. Down-regulation reduced the accumulation of 2,4-DHBA glucosides and enhanced the sensitivity of tea plants to Pcs. Conversely, overexpression of UGT95B17 increased plant disease resistance. The exogenous application of 2,4-DHBA and 2,5-DHBA, as well as the accumulation of DHBA and plant resistance comparison, indicate that 2,4-DHBA functions as a potentially bioactive molecule and is stored mainly as a glucose conjugate in tea plants, differs from the mechanism described in Arabidopsis. When 2,4-DHBA is applied exogenously, UGT95B17-silenced tea plants accumulated more 2,4-DHBA than SA and showed induced resistance to Pcs infection. These results indicate that 2,4-DHBA glucosylation positively regulates disease resistance and highlight the role of 2,4-DHBA as potentially bioactive molecule in the establishment of basal resistance in tea plants.


Asunto(s)
Arabidopsis , Camellia sinensis , Catecoles , Hidroxibenzoatos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Camellia sinensis/metabolismo , Resistencia a la Enfermedad , Arabidopsis/metabolismo , Té/metabolismo
2.
Plant Cell Environ ; 47(2): 682-697, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37882446

RESUMEN

Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.


Asunto(s)
Camellia sinensis , Lepidópteros , Animales , Camellia sinensis/metabolismo , Quercetina/farmacología , Quercetina/metabolismo , Herbivoria , Larva , Té/metabolismo , Glucósidos/metabolismo , Proteínas de Plantas/metabolismo
3.
J Agric Food Chem ; 71(49): 19682-19693, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37988651

RESUMEN

Tea (Camellia sinensis) flowers emit a large amount of volatiles that attract pollinators. However, few studies have characterized temporal and spatial variation in tea floral volatiles. To investigate the distribution of volatiles within tea flowers and their variation among opening stages, volatile components from different parts of tea flowers and different opening stages were collected by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. A total of 51 volatile compounds of eight chemical classes were identified in the tea flowers. Volatile compounds were most abundant in tea flowers of the Shuchazao cultivar. Acetophenone, 1-phenylethanol, 2-phenylethanol, and benzyl alcohol were the most abundant volatiles. Terpenes were common in the sepals, and benzoids were common in the stamens. The fatty acid derivatives were mainly distributed in the pistils and receptacles and were less abundant in the petals, sepals, and stamens. During the opening phase of tea flowers, the volatile content increased 12-fold, which mainly stemmed from the increase in benzoids. These results enhance our understanding of the formation of volatiles in tea flowers.


Asunto(s)
Camellia sinensis , Compuestos Orgánicos Volátiles , Camellia sinensis/química , Flores/química , Terpenos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida , Té/química , Compuestos Orgánicos Volátiles/química
4.
Plant Physiol ; 193(2): 1491-1507, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37315209

RESUMEN

Cold and drought stresses severely limit crop production and can occur simultaneously. Although some transcription factors and hormones have been characterized in plants subjected each stress, the role of metabolites, especially volatiles, in response to cold and drought stress exposure is rarely studied due to lack of suitable models. Here, we established a model for studying the role of volatiles in tea (Camellia sinensis) plants experiencing cold and drought stresses simultaneously. Using this model, we showed that volatiles induced by cold stress promote drought tolerance in tea plants by mediating reactive oxygen species and stomatal conductance. Needle trap microextraction combined with GC-MS identified the volatiles involved in the crosstalk and showed that cold-induced (Z)-3-hexenol improved the drought tolerance of tea plants. In addition, silencing C. sinensis alcohol dehydrogenase 2 (CsADH2) led to reduced (Z)-3-hexenol production and significantly reduced drought tolerance in response to simultaneous cold and drought stress. Transcriptome and metabolite analyses, together with plant hormone comparison and abscisic acid (ABA) biosynthesis pathway inhibition experiments, further confirmed the roles of ABA in (Z)-3-hexenol-induced drought tolerance of tea plants. (Z)-3-Hexenol application and gene silencing results supported the hypothesis that (Z)-3-hexenol plays a role in the integration of cold and drought tolerance by stimulating the dual-function glucosyltransferase UGT85A53, thereby altering ABA homeostasis in tea plants. Overall, we present a model for studying the roles of metabolites in plants under multiple stresses and reveal the roles of volatiles in integrating cold and drought stresses in plants.


Asunto(s)
Camellia sinensis , Respuesta al Choque por Frío , Ácido Abscísico/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Sequías , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Té/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
New Phytol ; 238(5): 2080-2098, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36908092

RESUMEN

Glycosyltransferases are nature's versatile tools to tailor the functionalities of proteins, carbohydrates, lipids, and small molecules by transferring sugars. Prominent substrates are hydroxycoumarins such as scopoletin, which serve as natural plant protection agents. Similarly, C13-apocarotenoids, which are oxidative degradation products of carotenoids/xanthophylls, protect plants by repelling pests and attracting pest predators. We show that C13-apocarotenoids interact with the plant glycosyltransferase NbUGT72AY1 and induce conformational changes in the enzyme catalytic center ultimately reducing its inherent UDP-α-d-glucose glucohydrolase activity and increasing its catalytic activity for productive hydroxycoumarin substrates. By contrast, C13-apocarotenoids show no effect on the catalytic activity toward monolignol lignin precursors, which are competitive substrates. In vivo studies in tobacco plants (Nicotiana benthamiana) confirmed increased glycosylation activity upon apocarotenoid supplementation. Thus, hydroxycoumarins and apocarotenoids represent specialized damage-associated molecular patterns, as they each provide precise information about the plant compartments damaged by pathogen attack. The molecular basis for the C13-apocarotenoid-mediated interplay of two plant protective mechanisms and their function as allosteric enhancers opens up potential applications of the natural products in agriculture and pharmaceutical industry.


Asunto(s)
Glicosiltransferasas , Lignina , Glicosiltransferasas/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Carotenoides/metabolismo , Nicotiana/metabolismo
6.
Plant Biotechnol J ; 20(11): 2089-2106, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35810348

RESUMEN

The tea plant is an economically important woody beverage crop. The unique taste of tea is evoked by certain metabolites, especially catechin esters, whereas their precise formation mechanism in different cell types remains unclear. Here, a fast protoplast isolation method was established and the transcriptional profiles of 16 977 single cells from 1st and 3rd leaves were investigated. We first identified 79 marker genes based on six isolated tissues and constructed a transcriptome atlas, mapped developmental trajectories and further delineated the distribution of different cell types during leaf differentiation and genes associated with cell fate transformation. Interestingly, eight differently expressed genes were found to co-exist at four branch points. Genes involved in the biosynthesis of certain metabolites showed cell- and development-specific characteristics. An unexpected catechin ester glycosyltransferase was characterized for the first time in plants by a gene co-expression network in mesophyll cells. Thus, the first single-cell transcriptional landscape in woody crop leave was reported and a novel metabolism pathway of catechin esters in plants was discovered.


Asunto(s)
Catequina , Catequina/genética , Catequina/metabolismo , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas/genética , Ésteres/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Redes y Vías Metabólicas , Té/genética , Té/metabolismo
7.
Plant Physiol ; 188(3): 1507-1520, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34893910

RESUMEN

Plant immune response following pathogenic infection is regulated by plant hormones, and salicylic acid (SA) and its sugar conjugates play important roles in establishing basal resistance. Here, the important pathogen Pseudopestalotiopsis camelliae-sinensis (Pcs) was isolated from tea gray blight, one of the most destructive diseases in tea plantations. Transcriptomic analysis led to the discovery of the putative Camellia sinensis UDP-glucosyltransferase CsUGT87E7 whose expression was significantly induced by SA application and Pcs infection. Recombinant CsUGT87E7 glucosylates SA with a Km value of 12 µM to form SA glucose ester (SGE). Downregulation reduced the accumulation of SGE, and CsUGT87E7-silenced tea plants exhibited greater susceptibility to pathogen infection than control plants. Similarly, CsUGT87E7-silenced tea leaves accumulated significantly less SA after infection and showed reduced expression of pathogenesis-related genes. These results suggest that CsUGT87E7 is an SA carboxyl glucosyltransferase that plays a positive role in plant disease resistance by modulating SA homeostasis through a mechanism distinct from that described in Arabidopsis (Arabidopsis thaliana). This study provides insight into the mechanisms of SA metabolism and highlights the role of SGE in the modulation of plant disease resistance.


Asunto(s)
Ascomicetos/patogenicidad , Camellia sinensis/genética , Camellia sinensis/metabolismo , Camellia sinensis/microbiología , Resistencia a la Enfermedad/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Ácido Salicílico/metabolismo , China , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/microbiología , Resistencia a la Enfermedad/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Enfermedades de las Plantas/microbiología
8.
Plant J ; 109(6): 1489-1506, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34931743

RESUMEN

Cold and drought stress are the most critical stresses encountered by crops and occur simultaneously under field conditions. However, it is unclear whether volatiles contribute to both cold and drought tolerance, and if so, by what mechanisms they act. Here, we show that airborne eugenol can be taken up by the tea (Camellia sinensis) plant and metabolized into glycosides, thus enhancing cold and drought tolerance of tea plants. A uridine diphosphate (UDP)-glucosyltransferase, UGT71A59, was discovered, whose expression is strongly induced by multiple abiotic stresses. UGT71A59 specifically catalyzes glucosylation of eugenol glucoside in vitro and in vivo. Suppression of UGT71A59 expression in tea reduced the accumulation of eugenol glucoside, lowered reactive oxygen species (ROS) scavenging capacity, and ultimately impaired cold and drought stress tolerance. Exposure to airborne eugenol triggered a marked increase in UGT71A59 expression, eugenol glucoside accumulation, and cold tolerance by modulating ROS accumulation and CBF1 expression. It also promoted drought tolerance by altering abscisic acid homeostasis and stomatal closure. CBF1 and CBF3 play positive roles in eugenol-induced cold tolerance and CBF2 may be a negative regulator of eugenol-induced cold tolerance in tea plants. These results provide evidence that eugenol functions as a signal in cold and drought tolerance regulation and shed new light on the biological functions of volatiles in the response to multiple abiotic stresses in plants.


Asunto(s)
Camellia sinensis , Camellia sinensis/metabolismo , Frío , Sequías , Eugenol/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico , Té/metabolismo
9.
J Agric Food Chem ; 70(1): 279-288, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34932338

RESUMEN

Xinyang Maojian (XYMJ) green tea is a famous high-grade Chinese green tea, but the key odorants contributing to its aroma have been poorly understood. In this study, solid-phase microextraction and solvent-assisted flavor evaporation were used for sample preparation, and gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O) were used for both qualitative and quantitative analysis. A total of 50 volatile compounds of five chemical classes were identified in XYMJ tea infusion. Among them, nine odorants including nonanal, ß-ionone, octanal, E-nerolidol, linalool, cis-3-hexenyl hexanoate, geraniol, decanal, and ß-cyclocitral were identified as key odorants of XYMJ based on GC-O, odor activity values, and aroma combination experiments. Changes in the content of these aroma-active compounds during the manufacturing process of XYMJ (fresh leaves, fixing, rolling, shaping, and drying) were also determined. Most aroma-active compounds decreased after the fixation process, with the exception of cis-3-hexenyl hexanoate. This is the first study to investigate the key odorants in XYMJ using the sensomics approach. The findings of this study provide novel information on the aroma quality of XYMJ.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , Olfatometría , , Compuestos Orgánicos Volátiles/análisis
10.
Plant Cell Environ ; 44(11): 3667-3680, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34449086

RESUMEN

Herbivore-induced plant volatiles prime neighbouring plants to respond more strongly to subsequent attacks. However, the key volatiles that trigger this state and their priming mechanisms remain largely unknown. The tea geometrid Ectropis obliqua is one of the most devastating leaf-feeding pests of tea plants. Here, plant-plant communication experiments demonstrated that volatiles emitted from tea plants infested by E. obliqua larvae triggered neighbouring plants to release volatiles that repel E. obliqua adult, especially mated females. Volatile analyses revealed that the quantity of eight volatiles increased dramatically when plants were exposed to volatiles emitted by infested tea plants, including (Z)-3-hexenol, linalool, α-farnesene, ß-Ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). The results of behavioural bioassays demonstrated that ß-Ocimene strongly repelled mated E. obliqua females. Individual volatile compound exposure experiments revealed that (Z)-3-hexenol, linalool, α-farnesene and DMNT triggered the emission of ß-Ocimene from tea plants. Chemical inhibition experiments demonstrated that the emission of ß-Ocimene induced by (Z)-3-hexenol, linalool, α-farnesene and DMNT were dependent on Ca2+ and JA signalling. These findings help us to understand how E. obliqua moths respond to volatiles emitted from tea plants and provide new insight into volatile-mediated plant-plant interactions. They have potential significance for the development of novel insect and pest control strategies in crops.


Asunto(s)
Monoterpenos Acíclicos/metabolismo , Alquenos/metabolismo , Camellia sinensis , Herbivoria , Mariposas Nocturnas/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Animales , Camellia sinensis/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Mariposas Nocturnas/crecimiento & desarrollo , Conducta Sexual Animal
11.
Food Chem ; 363: 130328, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34144415

RESUMEN

There is a claim that fresh tea leaves plucked in summer (FTL-S) are not suitable for green tea processing, but there is no scientific evidence to support this claim. The aroma properties of green tea (GT-S) made with FTL-S were studied by the analysis of volatiles during process, coupled with odor activity value (OAV) determination. The odor profiles of dry tea and tea infusion were investigated by sensory evaluation. The GT-S contained higher proportions of alcohols, alkenes and heterocyclic compounds with strong fragrance and nutty odors as well as moderate floral odor in comparison with FTL-S. ß-Damascenone and 2-ethyl-3,5-dimethylpyrazine with the OAV of 54,290 and 1.15, respectively, were the aroma-active compounds imparting woody and nutty odors in GT-S, respectively. Current study provides an alternative way to use FTL-S for green tea production, and we also found that L-theanine is an important aroma precursor for the formation of green tea aroma.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , Hojas de la Planta/química , , Compuestos Orgánicos Volátiles/análisis
12.
Food Chem ; 347: 129016, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33486364

RESUMEN

Roasting is crucial for producing large-leaf yellow tea (LYT) as it substantially affects chemical composition and sensory quality. However, the effect of roasting degree on LYT flavor quality is not clear. To investigate the effect of roasting degree on LYT flavor, the odor profiles and sensory evaluations of LYTs produced with small fire, medium fire and old fire roasting (OF) were determined. The OF was essential for the formation of LYT flavor with strong roasted, nutty, woody odors and weak fatty, fruity odors, and retaining high levels of GCG, total volatiles and heterocyclic compounds. Furthermore, the characteristic crispy-rice-like odor was only found in LYT with OF treatment and burnt flavor was missing. 2,3-Diethyl-5-methylpyrazine, trans-ß-ionone with odor activity value above 1600 and 39 respectively offered roasted, floral odors, respectively in LYT. The current results provide a scientific basis for understanding the reactions that occur during the conventional production of LYT.


Asunto(s)
Aromatizantes/análisis , Manipulación de Alimentos , Hojas de la Planta/química , Té/química , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis , Gusto
13.
Plant Cell Environ ; 44(4): 1178-1191, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32713005

RESUMEN

Herbivore-induced plant volatiles play important ecological roles in defense against stresses. However, if and which volatile(s) are involved in the plant-plant communication in response to herbivorous insects in tea plants remains unknown. Here, plant-plant communication experiments confirm that volatiles emitted from insects-attacked tea plants can trigger plant resistance and reduce the risk of herbivore damage by inducing jasmonic acid (JA) accumulation in neighboring plants. The emission of six compounds was significantly induced by geometrid Ectropis obliqua, one of the most common pests of the tea plant in China. Among them, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) could induce the accumulation of JA and thus promotes the resistance of neighboring intact plants to herbivorous insects. CsCYP82D47 was identified for the first time as a P450 enzyme, which catalyzes the final step in the biosynthesis of DMNT from (E)-nerolidol. Down-regulation of CsCYP82D47 in tea plants resulted in a reduced accumulation of DMNT and significantly reduced the release of DMNT in response to the feeding of herbivorous insects. The first evidence for plant-plant communication in response to herbivores in tea plants will help to understand how plants respond to volatile cues in response to herbivores and provide new insight into the role(s) of DMNT in tea plants.


Asunto(s)
Alquenos/metabolismo , Camellia sinensis/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Oxilipinas/metabolismo , Defensa de la Planta contra la Herbivoria , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Animales , Camellia sinensis/genética , Camellia sinensis/fisiología , Clonación Molecular , Comunicación , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Larva , Mariposas Nocturnas , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Compuestos Orgánicos Volátiles/metabolismo
14.
J Agric Food Chem ; 68(39): 10815-10821, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32840106

RESUMEN

ß-Ionone is a carotenoid-derived flavor and fragrance compound with a complex fruity and woody scent, known for its violet aroma. Due to the low odor threshold, ß-ionone dramatically affects the aroma and quality of tea. Previous studies have shown that ß-ionone increases during tea withering; however, its formation and regulation during the withering process are far from being understood. As dehydration is the most important stress during the withering of the tea leaves, we isolated a dehydration-induced gene belonging to the subfamily of carotenoid cleavage dioxygenases called carotenoid cleavage dioxygenase 1a (CsCCD1a) from Camellia sinensis and expressed it in Escherichia coli. The recombinant protein could generate volatile ß-ionone and pseudoionone from carotenoids. CsCCD1a was induced by dehydration stress, and its expression was related to the ß-ionone accumulation during tea withering. Overall, this study elucidated that CsCCD1a catalyzes the formation of ß-ionone in C. sinensis and enhanced the understanding of the ß-ionone formation under multiple stresses during the processing of tea.


Asunto(s)
Camellia sinensis/enzimología , Dioxigenasas/metabolismo , Norisoprenoides/metabolismo , Hojas de la Planta/química , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Camellia sinensis/química , Camellia sinensis/genética , Camellia sinensis/metabolismo , Dioxigenasas/química , Dioxigenasas/genética , Manipulación de Alimentos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alineación de Secuencia , Agua/análisis , Agua/metabolismo
15.
J Exp Bot ; 71(22): 7018-7029, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32777072

RESUMEN

Uridine diphosphate (UDP)-dependent glycosyltransferases catalyse the glycosylation of small molecules and play important roles in maintaining cell homeostasis and regulating plant development. Glycosyltransferases are widely distributed, but their detailed roles in regulating plant growth and development are largely unknown. In this study, we identified a UDP-glycosyltransferase, UGT85A53, from Camellia sinensis, the expression of which was strongly induced by various abiotic stress factors and its protein product was distributed in both the cytoplasm and nucleus. Ectopic overexpression of CsUGT85A53 in Arabidopsis resulted in an early-flowering phenotype under both long- and short-day conditions. The transcript accumulation of the flowering repressor genes FLC and ABI5, an activator of FLC in ABA-regulated flowering signaling, were both significantly decreased in transgenic Arabidopsis compared with wild-type plants. The decreased expression level of FLC might be associated with an increased level of DNA methylation that was observed in CsUGT85A53-overexpressing (OE) plants. Biochemical analyses showed that CsUGT85A53 could glucosylate ABA to form inactive ABA-glycoside in vitro and in planta. Overexpression of CsUGT85A53 in Arabidopsis resulted in a decreased concentration of free ABA and increased concentration of ABA-glucoside. The early-flowering phenotype in the CsUGT85A53-OE transgenic lines was restored by ABA application. Furthermore, CsUGT85A53-OE plants displayed an ABA-insensitive phenotype with higher germination rates compared with controls in the presence of low concentrations of exogenous ABA. Our findings are the first to identify a UGT in tea plants that catalyses ABA glucosylation and enhance flowering transition as a positive regulator.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Camellia sinensis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Camellia sinensis/genética , Regulación de la Expresión Génica de las Plantas , Germinación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
16.
J Integr Plant Biol ; 62(10): 1461-1468, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32275096

RESUMEN

Plants have evolved sophisticated defense mechanisms to overcome their sessile nature. However, if and how volatiles from cold-stressed plants can trigger interplant communication is still unknown. Here, we provide the first evidence for interplant communication via inducible volatiles in cold stress. The volatiles, including nerolidol, geraniol, linalool, and methyl salicylate, emitted from cold-stressed tea plants play key role(s) in priming cold tolerance of their neighbors via a C-repeat-binding factors-dependent pathway. The knowledge will help us to understand how plants respond to volatile cues in cold stress and agricultural ecosystems.


Asunto(s)
Camellia sinensis/metabolismo , Camellia sinensis/fisiología , Monoterpenos Acíclicos/metabolismo , Respuesta al Choque por Frío/fisiología , Salicilatos/metabolismo , Sesquiterpenos/metabolismo
17.
J Agric Food Chem ; 68(6): 1684-1690, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31957431

RESUMEN

The carotenoid-derived volatile ß-ionone plays an important role in the formation of green and black tea flavors due to its low odor threshold, but its formation and the gene(s) involved in its biosynthesis during the tea withering process is(are) still unknown. In this study, we found that the content of ß-ionone increased during the tea withering process catalyzed by an unknown enzyme(s). Correlation analysis of expression patterns of Camellia sinensis carotenoid cleavage dioxygenase genes (CsCCDs) and the ß-ionone content during the withering period revealed CsCCD4 as the most promising candidate. The full-length CsCCD4 gene was amplified from C. sinensis, and the biochemical function of the recombinant CsCCD4 protein was studied after coexpression in Escherichia coli strains engineered to accumulate ß-carotene. The recombinant protein was able to cleave a variety of carotenoids at the 9-10 and 9'-10' double bonds. Volatile ß-ionone was detected as the main product by gas and liquid chromatography-mass spectrometry. The accumulation of ß-ionone was consistent with the expression levels of CsCCD4 in different tissues and during the withering process. The CsCCD4 expression was induced by low temperature and mechanical damage stress but not by dehydration stress. The results demonstrate that CsCCD4 catalyzes the production of ß-ionone in the tea plant and provide insight into its formation mechanism during the withering process.


Asunto(s)
Camellia sinensis/enzimología , Carotenoides/metabolismo , Dioxigenasas/metabolismo , Norisoprenoides/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Camellia sinensis/química , Camellia sinensis/genética , Camellia sinensis/metabolismo , Dioxigenasas/genética , Manipulación de Alimentos , Espectrometría de Masas , Filogenia , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas/clasificación , Plantas/enzimología , Plantas/genética , Alineación de Secuencia
18.
J Agric Food Chem ; 68(10): 2880-2890, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-31603670

RESUMEN

As a result of the high variability of fruit properties in the European plum Prunus domestica, a histochemical analysis of fruits at different stages of development was performed to understand the ripening process in cv. 'Colora' (yellow-red skinned) and cv. 'Topfive' (purple skinned). Histological analysis showed that carotenoids in the fruit had two different origins. In the fruit flesh, they derived from chloroplasts that turned into chromoplasts, whereas carotenoids in the fruit skin derived probably from proplastids. Flavan-3-ols and proanthocyanidins showed differential localization during ripening. They were visible in the vacuole in different fruit tissues or organized in tannosomes in the fruit flesh. Tanninoplasts were observed only in hypodermal cells of 'Colora'. Toward maturity, anthocyanins were detected in the epidermis and later in the hypodermis of both cultivars. The study forms a basis for the analysis of the biosynthesis of secondary metabolites in European plums and their biological effects.


Asunto(s)
Antocianinas/análisis , Flavonoides/análisis , Frutas/química , Proantocianidinas/análisis , Prunus domestica/crecimiento & desarrollo , Cloroplastos/química , Frutas/crecimiento & desarrollo , Histología , Plastidios/química , Prunus domestica/química , Coloración y Etiquetado , Vacuolas/química
19.
New Phytol ; 226(2): 362-372, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31828806

RESUMEN

Plants produce and emit terpenes, including sesquiterpenes, during growth and development, which serve different functions in plants. The sesquiterpene nerolidol has health-promoting properties and adds a floral scent to plants. However, the glycosylation mechanism of nerolidol and its biological roles in plants remained unknown. Sesquiterpene UDP-glucosyltransferases were selected by using metabolites-genes correlation analysis, and its roles in response to cold stress were studied. We discovered the first plant UGT (UGT91Q2) in tea plant, whose expression is strongly induced by cold stress and which specifically catalyzes the glucosylation of nerolidol. The accumulation of nerolidol glucoside was consistent with the expression level of UGT91Q2 in response to cold stress, as well as in different tea cultivars. The reactive oxygen species (ROS) scavenging capacity of nerolidol glucoside was significantly higher than that of free nerolidol. Down-regulation of UGT91Q2 resulted in reduced accumulation of nerolidol glucoside, ROS scavenging capacity and tea plant cold tolerance. Tea plants absorbed airborne nerolidol and converted it to its glucoside, subsequently enhancing tea plant cold stress tolerance. Nerolidol plays a role in response to cold stress as well as in triggering plant-plant communication in response to cold stress. Our findings reveal previously unidentified roles of volatiles in response to abiotic stress in plants.


Asunto(s)
Camellia sinensis , Glucosiltransferasas , Sesquiterpenos , Camellia sinensis/enzimología , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico ,
20.
Food Res Int ; 123: 125-134, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31284960

RESUMEN

Shaking is a critical process in the formation of oolong tea quality, although the metabolites and their changes in this sensitive process have not yet been determined. In this study, untargeted analysis based on ultrahigh-performance liquid chromatography/quadrupole-Orbitrap mass spectrometry was conducted to comprehensively profile metabolite changes in different cultivars. Theanine glucoside was identified for the first time in oolong tea. Hierarchical cluster analysis indicated that shaking caused major changes in metabolite levels in oolong tea. Seventy-one, 83 and 73 potential features showed significant differences between pre- and post-shaking samples for var. sinensiscv. "Zimudan", "Shuixian", and "Huangmeigui," respectively. Chemometrics analysis of the three cultivars led to the identification of 18 shared metabolites, including epigallocatechin gallate, phenylalanine, tryptophan, proline, and hydroxy-jasmonic acid, as potential markers. This study identified the metabolites that allow monitoring of tea quality formation during both processing and preservation, and it provides a novel strategy for data reduction in studies to discover key metabolites.


Asunto(s)
Metabolómica , Té/química , Catequina/análogos & derivados , Catequina/análisis , Cromatografía Líquida de Alta Presión , Bases de Datos Factuales , Calidad de los Alimentos , Glutamatos/análisis , Fenilalanina/análisis , Hojas de la Planta/química , Prolina/análisis , Triptófano/análisis , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA