Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 38(21): 4870-4885, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29703788

RESUMEN

Little is known about whether information transfer at primary sensory thalamic nuclei is modified by behavioral context. Here we studied the influence of previous decisions/rewards on current choices and preceding spike responses of ventroposterior medial thalamus (VPm; the primary sensory thalamus in the rat whisker-related tactile system). We trained head-fixed rats to detect a ramp-like deflection of one whisker interspersed within ongoing white noise stimulation. Using generative modeling of behavior, we identify two task-related variables that are predictive of actual decisions. The first reflects task engagement on a local scale ("trial history": defined as the decisions and outcomes of a small number of past trials), whereas the other captures behavioral dynamics on a global scale ("satiation": slow dynamics of the response pattern along an entire session). Although satiation brought about a slow drift from Go to NoGo decisions during the session, trial history was related to local (trial-by-trial) patterning of Go and NoGo decisions. A second model that related the same predictors first to VPm spike responses, and from there to decisions, indicated that spiking, in contrast to behavior, is sensitive to trial history but relatively insensitive to satiation. Trial history influences VPm spike rates and regularity such that a history of Go decisions would predict fewer noise-driven spikes (but more regular ones), and more ramp-driven spikes. Neuronal activity in VPm, thus, is sensitive to local behavioral history, and may play an important role in higher-order cognitive signaling.SIGNIFICANCE STATEMENT It is an important question for perceptual and brain functions to find out whether cognitive signals modulate the sensory signal stream and if so, where in the brain this happens. This study provides evidence that decision and reward history can already be reflected in the ascending sensory pathway, on the level of first-order sensory thalamus. Cognitive signals are relayed very selectively such that only local trial history (spanning a few trials) but not global history (spanning an entire session) are reflected.


Asunto(s)
Cognición/fisiología , Detección de Señal Psicológica/fisiología , Tálamo/fisiología , Tacto/fisiología , Algoritmos , Animales , Fenómenos Biomecánicos/fisiología , Mapeo Encefálico , Toma de Decisiones/fisiología , Femenino , Modelos Lineales , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/fisiología , Vibrisas/inervación , Vibrisas/fisiología
2.
Cell Rep ; 14(4): 795-807, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26776512

RESUMEN

It has been posited that the regulation of burst/tonic firing in the thalamus could function as a mechanism for controlling not only how much but what kind of information is conveyed to downstream cortical targets. Yet how this gating mechanism is adaptively modulated on fast timescales by ongoing sensory inputs in rich sensory environments remains unknown. Using single-unit recordings in the rat vibrissa thalamus (VPm), we found that the degree of bottom-up adaptation modulated thalamic burst/tonic firing as well as the synchronization of bursting across the thalamic population along a continuum for which the extremes facilitate detection or discrimination of sensory inputs. Optogenetic control of baseline membrane potential in thalamus further suggests that this regulation may result from an interplay between adaptive changes in thalamic membrane potential and synaptic drive from inputs to thalamus, setting the stage for an intricate control strategy upon which cortical computation is built.


Asunto(s)
Adaptación Fisiológica , Potenciales Evocados Somatosensoriales , Tálamo/fisiología , Animales , Femenino , Potenciales de la Membrana , Modelos Neurológicos , Neuronas/fisiología , Optogenética , Ratas , Ratas Sprague-Dawley , Tálamo/citología , Vibrisas/inervación
3.
Cerebellum ; 9(1): 77-87, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19902318

RESUMEN

How does the cerebellum participate in neocortical rhythms? Neocortical signals destined for the cerebellum are integrated in the pontine nuclei (PN) with cerebellar output signals via a direct, reciprocal feedback loop with the cerebellar nuclei (CN). The present study investigated the fate of two spontaneously occurring rhythms in rat neocortex under ketamine anesthesia-slow wave activity at around 1 Hz and gamma oscillations-within this pontonuclear feedback loop. Coordinated oscillatory neuronal activity was studied using simultaneous multineuron recordings in primary motor cortex (M1), PN, and lateral CN. It was revealed that slow burst firing-known in neocortex as "up and down states"-is readily conveyed within the pontonuclear feedback loop and thus engages the entire cerebropontocerebellothalamic loop. In contrast, gamma band synchronous oscillations reached only the PN under the present experimental conditions. Surprisingly, many CN single units were actually found to oscillate in the gamma range, but they completely failed to synchronize with other units in either CN or PN. These results show firstly that slow concerted activity can readily engage the entire cerebrocerebellar loop. Secondly, they raise the possibility that fast gamma oscillations may be incompatible with cerebellar processing and get blocked out. Future studies in behaving animals are needed to answer the question whether signals coded in gamma band frequency are converted to another carrier code using the feedback control exerted by the pontonuclear loop.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Cerebelo/fisiología , Corteza Cerebral/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Animales , Cerebelo/anatomía & histología , Corteza Cerebral/anatomía & histología , Retroalimentación Fisiológica/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Vías Nerviosas/anatomía & histología , Periodicidad , Puente/anatomía & histología , Puente/fisiología , Ratas , Ratas Sprague-Dawley , Tálamo/anatomía & histología , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA