Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 11(10): e0163214, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27788147

RESUMEN

BACKGROUND: Although reduced glutathione (rGSH) is decreased in obese mice and humans, block of GSH synthesis by buthionine sulfoximine (BSO) results in a lean, insulin-sensitive phenotype. Data is lacking about the effect of BSO on GSH precursors, cysteine and glutamate. Plasma total cysteine (tCys) is positively associated with stearoyl-coenzyme A desaturase (SCD) activity and adiposity in humans and animal models. OBJECTIVE: To explore the phenotype, amino acid and fatty acid profiles in BSO-treated mice. DESIGN: Male C3H/HeH mice aged 11 weeks were fed a high-fat diet with or without BSO in drinking water (30 mmol/L) for 8 weeks. Amino acid and fatty acid changes were assessed, as well as food consumption, energy expenditure, locomotor activity, body composition and liver vacuolation (steatosis). RESULTS: Despite higher food intake, BSO decreased particularly fat mass but also lean mass (both P<0.001), and prevented fatty liver vacuolation. Physical activity increased during the dark phase. BSO decreased plasma free fatty acids and enhanced insulin sensitivity. BSO did not alter liver rGSH, but decreased plasma total GSH (tGSH) and rGSH (by ~70%), and liver tGSH (by 82%). Glutamate accumulated in plasma and liver. Urine excretion of cysteine and its precursors was increased by BSO. tCys, rCys and cystine decreased in plasma (by 23-45%, P<0.001 for all), but were maintained in liver, at the expense of decreased taurine. Free and total plasma concentrations of the SCD products, oleic and palmitoleic acids were decreased (by 27-38%, P <0.001 for all). CONCLUSION: Counterintuitively, block of GSH synthesis decreases circulating tCys, raising the question of whether the BSO-induced obesity-resistance is linked to cysteine depletion. Cysteine-supplementation of BSO-treated mice is warranted to dissect the effects of cysteine and GSH depletion on energy metabolism.


Asunto(s)
Aminoácidos/metabolismo , Peso Corporal , Ácidos Grasos/metabolismo , Glutatión/deficiencia , Fenotipo , Compuestos de Sulfhidrilo/metabolismo , Tejido Adiposo/citología , Aminoácidos/sangre , Animales , Composición Corporal , Butionina Sulfoximina/metabolismo , Ingestión de Alimentos , Metabolismo Energético , Ácidos Grasos/sangre , Glutatión/orina , Insulina/metabolismo , Hígado/citología , Hígado/metabolismo , Locomoción , Masculino , Ratones , Compuestos de Sulfhidrilo/sangre
2.
Diabetologia ; 59(7): 1503-1512, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27138914

RESUMEN

AIMS/HYPOTHESIS: While the class I phosphoinositide 3-kinases (PI3Ks) are well-documented positive regulators of metabolism, the involvement of class II PI3K isoforms (PI3K-C2α, -C2ß and -C2γ) in metabolic regulation is just emerging. Organismal inactivation of PI3K-C2ß increases insulin signalling and sensitivity, whereas PI3K-C2γ inactivation has a negative metabolic impact. In contrast, the role of PI3K-C2α in organismal metabolism remains unexplored. In this study, we investigated whether kinase inactivation of PI3K-C2α affects glucose metabolism in mice. METHODS: We have generated and characterised a mouse line with a constitutive inactivating knock-in (KI) mutation in the kinase domain of the gene encoding PI3K-C2α (Pik3c2a). RESULTS: While homozygosity for kinase-dead PI3K-C2α was embryonic lethal, heterozygous PI3K-C2α KI mice were viable and fertile, with no significant histopathological findings. However, male heterozygous mice showed early onset leptin resistance, with a defect in leptin signalling in the hypothalamus, correlating with a mild, age-dependent obesity, insulin resistance and glucose intolerance. Insulin signalling was unaffected in insulin target tissues of PI3K-C2α KI mice, in contrast to previous reports in which downregulation of PI3K-C2α in cell lines was shown to dampen insulin signalling. Interestingly, no metabolic phenotypes were detected in female PI3K-C2α KI mice at any age. CONCLUSIONS/INTERPRETATION: Our data uncover a sex-dependent role for PI3K-C2α in the modulation of hypothalamic leptin action and systemic glucose homeostasis. ACCESS TO RESEARCH MATERIALS: All reagents are available upon request.


Asunto(s)
Resistencia a la Insulina/fisiología , Leptina/metabolismo , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Adipocitos/metabolismo , Animales , Western Blotting , Línea Celular , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Glucosa/metabolismo , Homeostasis/genética , Homeostasis/fisiología , Hipotálamo/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
3.
PLoS One ; 10(4): e0121829, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25830347

RESUMEN

In 2007, a genome wide association study identified a SNP in intron one of the gene encoding human FTO that was associated with increased body mass index. Homozygous risk allele carriers are on average three kg heavier than those homozygous for the protective allele. FTO is a DNA/RNA demethylase, however, how this function affects body weight, if at all, is unknown. Here we aimed to pharmacologically inhibit FTO to examine the effect of its demethylase function in vitro and in vivo as a first step in evaluating the therapeutic potential of FTO. We showed that IOX3, a known inhibitor of the HIF prolyl hydroxylases, decreased protein expression of FTO (in C2C12 cells) and reduced maximal respiration rate in vitro. However, FTO protein levels were not significantly altered by treatment of mice with IOX3 at 60 mg/kg every two days. This treatment did not affect body weight, or RER, but did significantly reduce bone mineral density and content and alter adipose tissue distribution. Future compounds designed to selectively inhibit FTO's demethylase activity could be therapeutically useful for the treatment of obesity.


Asunto(s)
Fármacos Antiobesidad/farmacología , Glicina/análogos & derivados , Isoquinolinas/farmacología , Oxigenasas de Función Mixta/antagonistas & inhibidores , Obesidad/tratamiento farmacológico , Oxo-Ácido-Liasas/antagonistas & inhibidores , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Animales , Línea Celular , Evaluación Preclínica de Medicamentos , Glicina/farmacología , Concentración 50 Inhibidora , Masculino , Ratones Endogámicos C57BL , Oxigenasas de Función Mixta/metabolismo , Obesidad/metabolismo , Oxo-Ácido-Liasas/metabolismo
4.
Toxicol Sci ; 126(2): 306-16, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22262563

RESUMEN

Certain human diseases affecting the biliary tree can be modeled in rats by ingestion of the hepatobiliary toxin alpha-naphthylisothiocyanate (ANIT). Phosphorus magnetic resonance spectroscopy (MRS) allows the noninvasive monitoring of cell dynamics through detection of phosphodiesters (PDE) and phosphomonoesters (PME). Hepatic (31)P MRS techniques were therefore used to study the toxic effects of low-dose chronic ANIT ingestion, with a view toward providing biomarkers sensitive to hepatobiliary dysfunction and cholestatic liver injury. Rats were fed an ANIT supplemented diet at three doses (ANIT_0.05%, ANIT_0.04%, and ANIT_0.025%) for 2 weeks. Data from in vivo MRS were compared with results from pair-fed controls (PFCs). Blood and tissue samples were collected at 2 weeks for clinical chemistry, histology, and (1)H magic angle spinning MRS. Increases in PDE, relative to total phosphorus (tPh), were detected in both the ANIT_0.05% and ANIT_0.04% groups (0.07 ± 0.01 and 0.08 ± 0.01, respectively) relative to PFC groups (0.03 ± 0.01 and 0.05 ± 0.01, respectively). An increase in PME/tPh was observed in the ANIT_0.05% group only (0.17 ± 0.02) relative to PFC_0.05% (0.12 ± 0.01). Ex vivo (1)H MRS findings supported this, wherein measured phosphocholines (PCs) were increased in ANIT_0.05% and ANIT_0.04% groups. Increases in relative total choline (tCho) distinguished the ANIT_0.05% group from the ANIT_0.04% group. Markers of hepatotoxicity such as raised total bilirubin and alkaline phosphatase were found at all ANIT doses. Histological findings included a dose-related increase in both severity of biliary hyperplasia and focal hepatocellular necrosis. Here, we found that ANIT-induced moderate hepatobiliary dysfunction was associated with a relative increase in phosphodiesters in vivo and PCs ex vivo. Raised PME/tPh in vivo and tCho ex vivo were also present at high doses corresponding to a higher incidence of marked biliary hyperplasia and moderate hepatocellular necrosis.


Asunto(s)
1-Naftilisotiocianato/toxicidad , Hígado/efectos de los fármacos , Espectroscopía de Resonancia Magnética/métodos , 1-Naftilisotiocianato/administración & dosificación , Análisis de Varianza , Animales , Peso Corporal , Conducta Alimentaria , Técnicas In Vitro , Hígado/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA