Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Diabetes ; 72(9): 1207-1213, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37347793

RESUMEN

To investigate whether glucoregulatory neurons in the hypothalamus can sense and respond to physiological variation in the blood glucose (BG) level, we combined continuous arterial glucose monitoring with continuous measures of the activity of a specific subset of neurons located in the hypothalamic ventromedial nucleus that express pituitary adenylate cyclase activating peptide (VMNPACAP neurons) obtained using fiber photometry. Data were collected in conscious, free-living mice during a 1-h baseline monitoring period and a subsequent 2-h intervention period during which the BG level was raised either by consuming a chow or a high-sucrose meal or by intraperitoneal glucose injection. Cross-correlation analysis revealed that, following a 60- to 90-s delay, interventions that raise the BG level reliably associate with reduced VMNPACAP neuron activity (P < 0.01). In addition, a strong positive correlation between BG and spontaneous VMNPACAP neuron activity was observed under basal conditions but with a much longer (∼25 min) temporal offset, consistent with published evidence that VMNPACAP neuron activation raises the BG level. Together, these findings are suggestive of a closed-loop system whereby VMNPACAP neuron activation increases the BG level; detection of a rising BG level, in turn, feeds back to inhibit these neurons. To our knowledge, these findings constitute the first evidence of a role in glucose homeostasis for glucoregulatory neurocircuits that, like pancreatic ß-cells, sense and respond to physiological variation in glycemia. ARTICLE HIGHLIGHTS: By combining continuous arterial glucose monitoring with fiber photometry, studies investigated whether neurons in the murine ventromedial nucleus that express pituitary adenylate cyclase activating peptide (VMNPACAP neurons) detect and respond to changes in glycemia in vivo. VMNPACAP neuron activity rapidly decreases (within <2 min) when the blood glucose level is raised by either food consumption or glucose administration. Spontaneous VMNPACAP neuron activity also correlates positively with glycemia, but with a longer temporal offset, consistent with reports that hyperglycemia is induced by experimental activation of these neurons. Like pancreatic ß-cells, neurons in the hypothalamic ventromedial nucleus appear to sense and respond to physiological variation in glycemia.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Glucemia , Ratones , Animales , Glucemia/análisis , Adenilil Ciclasas , Hipotálamo , Glucosa , Neuronas/fisiología , Péptidos
2.
Nat Metab ; 3(12): 1662-1679, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34931084

RESUMEN

Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Células Ependimogliales/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Neuronas/metabolismo , Transducción de Señal , Proteína Relacionada con Agouti/química , Animales , Biomarcadores , Barrera Hematoencefálica/metabolismo , Calcio , Metabolismo Energético , Técnica del Anticuerpo Fluorescente , Ghrelina/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Modelos Biológicos , Fragmentos de Péptidos/metabolismo , Receptor de Insulina/metabolismo
3.
Nat Commun ; 11(1): 4458, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895383

RESUMEN

In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lepob/ob mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling.


Asunto(s)
Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Factor 1 de Crecimiento de Fibroblastos/administración & dosificación , Hipoglucemiantes/administración & dosificación , Hipotálamo/efectos de los fármacos , Proteínas Recombinantes/administración & dosificación , Proteína Relacionada con Agouti/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Glucemia/análisis , Comunicación Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa/efectos adversos , Sacarosa en la Dieta/administración & dosificación , Sacarosa en la Dieta/efectos adversos , Humanos , Hipotálamo/citología , Hipotálamo/patología , Inyecciones Intraventriculares , Leptina/genética , Masculino , Melanocortinas/metabolismo , Hormonas Estimuladoras de los Melanocitos/administración & dosificación , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , RNA-Seq , Receptor de Melanocortina Tipo 4/genética , Receptores de Melanocortina/antagonistas & inhibidores , Receptores de Melanocortina/metabolismo , Inducción de Remisión/métodos , Transducción de Señal/efectos de los fármacos , Análisis de la Célula Individual , Técnicas Estereotáxicas , Transcriptoma/efectos de los fármacos
4.
Neuropeptides ; 73: 89-95, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30471778

RESUMEN

Peptide YY(3-36) ((PYY(3-36)) and glucagon like peptide 1 (GLP-1) in combination reduce food intake and body weight in an additive or synergistic manner in animal models and in humans. Nevertheless, the mechanisms behind are not completely understood. The present study aims to investigate the effect of combining PYY(3-36) and the GLP-1 receptor agonist exendin-4 (Ex4) by examining acute food intake and global neuronal activation as measured by c-fos in C57BL/6 J mice. An additive reduction in food intake was found 1.5 h after s.c dosing with the combination of PYY(3-36) (200 µg/kg) and Ex4 (2.5 µg/kg). This was associated with a synergistic enhancement of c-fos reactivity in central amygdalar nucleus (CeA), rostral part of the mediobasal arcuate nucleus (ARH), supratrigeminal nucleus (SUT), lateral parabrachial nucleus (PB), area postrema (AP) and nucleus tractus solitarius (NTS) compared to vehicle, PYY(3-36) and Ex4 individually dosed mice. The regions activated by Ex4 individually and PYY(3-36) and Ex4 in combination resembled each other, but the combination group had a significantly stronger c-fos response. Twenty-five brain areas were activated by PYY(3-36) and Ex4 in combination compared to vehicle versus nine brain areas by Ex4 individually. No significant increase in c-fos reactivity was found by PYY(3-36) compared to vehicle dosed mice. The neuronal activation of ARH and the AP/NTS to PB to CeA pathway is important for appetite regulation while SUT has not previously been reported in the regulation of energy balance. As PYY(3-36) and Ex4 act on different neurons leading to recruitment of different signalling pathways within and to the brain, an interaction of these pathways may contribute to their additive/synergistic action. Thus, PYY(3-36) boosts the effect of Ex4 possibly by inducing less inhibition of neuronal activity leading to an enhanced neuronal activity induced by Ex4.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Exenatida/farmacología , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Péptido YY/farmacología , Amígdala del Cerebelo/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Hipotálamo/metabolismo , Ratones , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
5.
Sci Rep ; 8(1): 10310, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985439

RESUMEN

Light Sheet Fluorescence Microscopy (LSFM) of whole organs, in particular the brain, offers a plethora of biological data imaged in 3D. This technique is however often hindered by cumbersome non-automated analysis methods. Here we describe an approach to fully automate the analysis by integrating with data from the Allen Institute of Brain Science (AIBS), to provide precise assessment of the distribution and action of peptide-based pharmaceuticals in the brain. To illustrate this approach, we examined the acute central nervous system effects of the glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide. Peripherally administered liraglutide accessed the hypothalamus and brainstem, and led to activation in several brain regions of which most were intersected by projections from neurons in the lateral parabrachial nucleus. Collectively, we provide a rapid and unbiased analytical framework for LSFM data which enables quantification and exploration based on data from AIBS to support basic and translational discovery.


Asunto(s)
Mapeo Encefálico , Hipoglucemiantes/farmacología , Liraglutida/farmacología , Sistema Nervioso/efectos de los fármacos , Animales , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Ingestión de Alimentos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipotálamo/metabolismo , Hipotálamo/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Sistema Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
6.
Acta Obstet Gynecol Scand ; 96(10): 1197-1204, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28590567

RESUMEN

INTRODUCTION: The aim of this study was to evaluate whether vitamin D insufficiency is associated with preterm delivery and preeclampsia in women with type 1 diabetes. MATERIAL AND METHODS: An observational study of 198 pregnant women with type 1 diabetes. 25-Hydroxy-Vitamin D and HbA1c were measured in blood samples in early (median 8 weeks, range 5-14) and late (34 weeks, range 32-36) pregnancy. Kidney involvement (microalbuminuria or nephropathy) at inclusion, smoking status at inclusion, preterm delivery (<37 weeks) and preeclampsia (blood pressure ≥140/90 mmHg and proteinuria) were registered. Vitamin D supplementation of 10 µg daily was routinely recommended. RESULTS: Thirty-nine (20%) of the 198 women delivered preterm and 16 (8%) developed preeclampsia. Vitamin D insufficiency (<50 nmol/L) was present in 68 women (34%) in early pregnancy and in 73 women (37%) in late pregnancy. Preterm delivery occurred more frequently in women with vitamin D insufficiency in late pregnancy (27% vs. 15%, crude odds ratio 2.1; 95% confidence interval 1.0-4.3, p = 0.04). After adjustment for preexisting kidney involvement, HbA1c in late pregnancy and smoking the association became nonsignificant (adjusted odds ratio 1.8; 95% confidence interval 0.8-3.7). Preeclampsia developed in 11% of women with vitamin D insufficiency vs. 6% of the remaining women (crude odds ratio 1.8; 95% confidence interval 0.9-4.1, p = 0.25). CONCLUSION: In women with type 1 diabetes, preterm delivery was twice as frequent in women with vitamin D insufficiency in late pregnancy in crude analysis, but in this small study, low vitamin D was not independently associated with preterm birth or preeclampsia.


Asunto(s)
Diabetes Mellitus Tipo 1/sangre , Preeclampsia/sangre , Nacimiento Prematuro/sangre , Deficiencia de Vitamina D/sangre , Vitamina D/análogos & derivados , Femenino , Humanos , Embarazo , Nacimiento Prematuro/prevención & control , Vitamina D/sangre , Deficiencia de Vitamina D/prevención & control
7.
Nat Commun ; 7: 11436, 2016 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-27142507

RESUMEN

Large-scale mass spectrometry-based peptidomics for drug discovery is relatively unexplored because of challenges in peptide degradation and identification following tissue extraction. Here we present a streamlined analytical pipeline for large-scale peptidomics. We developed an optimized sample preparation protocol to achieve fast, reproducible and effective extraction of endogenous peptides from sub-dissected organs such as the brain, while diminishing unspecific protease activity. Each peptidome sample was analysed by high-resolution tandem mass spectrometry and the resulting data set was integrated with publically available databases. We developed and applied an algorithm that reduces the peptide complexity for identification of biologically relevant peptides. The developed pipeline was applied to rat hypothalamus and identifies thousands of neuropeptides and their post-translational modifications, which is combined in a resource format for visualization, qualitative and quantitative analyses.


Asunto(s)
Algoritmos , Hipotálamo/química , Neuropéptidos/aislamiento & purificación , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Calor , Hipotálamo/metabolismo , Masculino , Microondas , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Neuropéptidos/metabolismo , Perfusión , Fosforilación , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
8.
J Diabetes Investig ; 7 Suppl 1: 56-63, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27186357

RESUMEN

Liraglutide is a glucagon-like peptide-1 receptor (GLP-1R) agonist marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide reduces bodyweight, and has recently also been approved for the obesity indication. Acutely, GLP-1 markedly reduces gastric emptying, and this effect was previously believed to at least partly explain the effect on bodyweight loss. However, recent studies in both humans and animals have shown that GLP-1R agonists, such as liraglutide, that lead to pharmacological concentrations for 24 h/day only have a minor effect on gastric emptying; such an effect is unlikely to have lasting effects on appetite reduction. Liraglutide has been shown to have direct effects in the arcuate nucleus of the rodent brain, activating pro-opiomelanocortin neurons and increasing levels of the cocaine- and amphetamine-stimulated transcript neuropeptide messenger ribonucleic acid, which correlate nicely to clinical studies where liraglutide was shown to increase feelings of satiety. However, despite the lack of a GLP-1R on agouti-related peptide/neuropeptide Y neurons, liraglutide also was able to prevent a hunger associated increase in agouti-related peptide and neuropeptide Y neuropeptide messenger ribonucleic acid, again with a strong correlation to clinical studies that document reduced hunger feelings in patients while taking liraglutide. Studies using fluorescent labeled liraglutide, as well as other GLP-1R agonists, and analysis using single-plane illumination microscopy show that such medium-sized peptide-based compounds can directly access not only circumventricular organs of the brain, but also directly access discrete regions in the hypothalamus. The direct effects of long-acting GLP-1R agonists in the hypothalamus are likely to be an important new pathway in understanding GLP-1R agonist mediated weight loss.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipotálamo/metabolismo , Liraglutida/administración & dosificación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Animales , Encéfalo/efectos de los fármacos , Humanos , Hipotálamo/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Páncreas/efectos de los fármacos , Páncreas/metabolismo
9.
J Clin Invest ; 124(10): 4473-88, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25202980

RESUMEN

Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1-producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r(-/-) mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.


Asunto(s)
Péptido 1 Similar al Glucagón/análogos & derivados , Receptores de Glucagón/metabolismo , Pérdida de Peso/efectos de los fármacos , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Electrofisiología , Péptido 1 Similar al Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón , Hipotálamo/metabolismo , Liraglutida , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Proopiomelanocortina/metabolismo , Ratas , Ratas Sprague-Dawley , Nervio Vago/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA