Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Dyn ; 247(9): 1033-1042, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30152577

RESUMEN

BACKGROUND: During heart development, it has been hypothesized that apoptosis of atrioventricular canal myocardium and replacement by fibrous tissue derived from the epicardium are imperative to develop a mature atrioventricular conduction. To test this, apoptosis was blocked using an established caspase inhibitor and epicardial growth was delayed using the experimental epicardial inhibition model, both in chick embryonic hearts. RESULTS: Chicken embryonic hearts were either treated with the peptide caspase inhibitor zVAD-fmk by intrapericardial injection in ovo (ED4) or underwent epicardial inhibition (ED2.5). Spontaneously beating embryonic hearts isolated (ED7-ED8) were then stained with voltage-sensitive dye Di-4-ANEPPS and imaged at 0.5-1 kHz. Apoptotic cells were quantified (ED5-ED7) by whole-mount LysoTracker Red and anti-active caspase 3 staining. zVAD-treated hearts showed a significantly increased proportion of immature (base to apex) activation patterns at ED8, including ventricular activation originating from the right atrioventricular junction, a pattern never observed in control hearts. zVAD-treated hearts showed decreased numbers of apoptotic cells in the atrioventricular canal myocardium at ED7. Hearts with delayed epicardial outgrowth showed also increased immature activation patterns at ED7.5 and ED8.5. However, the ventricular activation always originated from the left atrioventricular junction. Histological examination showed no changes in apoptosis rates, but a diminished presence of atrioventricular sulcus tissue compared with controls. CONCLUSIONS: Apoptosis in the atrioventricular canal myocardium and controlled replacement of this myocardium by epicardially derived HCN4-/Trop1- sulcus tissue are essential determinants of mature ventricular activation pattern. Disruption can lead to persistence of accessory atrioventricular connections, forming a morphological substrate for ventricular pre-excitation. Developmental Dynamics 247:1033-1042, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Apoptosis , Remodelación Atrial , Sistema de Conducción Cardíaco/fisiopatología , Pericardio , Remodelación Ventricular , Animales , Embrión de Pollo , Molécula de Adhesión Celular Epitelial , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Síndromes de Preexcitación/etiología
2.
Clin Sci (Lond) ; 121(1): 29-41, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21275906

RESUMEN

Advanced HF (heart failure) is associated with altered substrate metabolism. Whether modification of substrate use improves the course of HF remains unknown. The antihyperglycaemic drug MET (metformin) affects substrate metabolism, and its use might be associated with improved outcome in diabetic HF. The aim of the present study was to examine whether MET would improve cardiac function and survival also in non-diabetic HF. Volume-overload HF was induced in male Wistar rats by creating ACF (aortocaval fistula). Animals were randomized to placebo/MET (300 mg·kg(-1) of body weight·day(-1), 0.5% in food) groups and underwent assessment of metabolism, cardiovascular and mitochondrial functions (n=6-12/group) in advanced HF stage (week 21). A separate cohort served for survival analysis (n=10-90/group). The ACF group had marked cardiac hypertrophy, increased LVEDP (left ventricular end-diastolic pressure) and lung weight confirming decompensated HF, increased circulating NEFAs (non-esterified 'free' fatty acids), intra-abdominal fat depletion, lower glycogen synthesis in the skeletal muscle (diaphragm), lower myocardial triacylglycerol (triglyceride) content and attenuated myocardial (14)C-glucose and (14)C-palmitate oxidation, but preserved mitochondrial respiratory function, glucose tolerance and insulin sensitivity. MET therapy normalized serum NEFAs, decreased myocardial glucose oxidation, increased myocardial palmitate oxidation, but it had no effect on myocardial gene expression, AMPK (AMP-activated protein kinase) signalling, ATP level, mitochondrial respiration, cardiac morphology, function and long-term survival, despite reaching therapeutic serum levels (2.2±0.7 µg/ml). In conclusion, MET-induced enhancement of myocardial fatty acid oxidation had a neutral effect on cardiac function and survival. Recently reported cardioprotective effects of MET may not be universal to all forms of HF and may require AMPK activation or ATP depletion. No increase in mortality on MET supports its safe use in diabetic HF.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Glucógeno/metabolismo , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/fisiopatología , Hemodinámica/efectos de los fármacos , Hipoglucemiantes/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Pulmón/patología , Masculino , Metformina/sangre , Mitocondrias Cardíacas/fisiología , Miocardio/metabolismo , Miocardio/patología , Tamaño de los Órganos/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ratas , Ratas Wistar , Análisis de Supervivencia , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA