Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Clin Nutr ; 111(5): 1068-1078, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32167131

RESUMEN

BACKGROUND: Unexplained heterogeneity in clinical trials has resulted in questions regarding the effectiveness of É£-linolenic acid (GLA)-containing botanical oil supplements. This heterogeneity may be explained by genetic variation within the fatty acid desaturase (FADS) gene cluster that is associated with circulating and tissue concentrations of arachidonic acid (ARA) and dihomo-É£-linolenic acid (DGLA), both of which may be synthesized from GLA and result in proinflammatory and anti-inflammatory metabolites, respectively. OBJECTIVES: The objective of this study was to prospectively compare the capacity of a non-Hispanic white cohort, stratified by FADS genotype at the key single-nucleotide polymorphism (SNP) rs174537, to metabolize 18-carbon omega-6 (n-6) PUFAs in borage oil (BO) and soybean oil (SO) to GLA, DGLA, and ARA. METHODS: Healthy adults (n = 64) participated in a randomized, double-blind, crossover intervention. Individuals received encapsulated BO (Borago officinalis L.; 37% LA and 23% GLA) or SO [Glycine max (L.) Merr.; 50% LA and 0% GLA] for 4 wk, followed by an 8-wk washout period, before consuming the opposite oil for 4 wk. Serum lipids and markers of inflammation (C-reactive protein) were assessed for both oil types at baseline and during weeks 2 and 4 of the intervention. RESULTS: SO supplementation failed to alter circulating concentrations of any n-6 long-chain PUFAs. In contrast, a modest daily dose of BO elevated serum concentrations of GLA and DGLA in an rs174537 genotype-dependent manner. In particular, DGLA increased by 57% (95% CI: 0.38, 0.79) in GG genotype individuals, but by 141% (95% CI: 1.03, 2.85) in TT individuals. For ARA, baseline concentrations varied substantially by genotype and increased modestly with BO supplementation, suggesting a key role for FADS variation in the balance of DGLA and ARA. CONCLUSIONS: The results of this study clearly suggest that personalized and population-based approaches considering FADS genetic variation may be necessary to optimize the design of future clinical studies with GLA-containing oils. This trial was registered at clinicaltrials.gov as NCT02337231.


Asunto(s)
Ácido Graso Desaturasas/genética , Ácido Linoleico/sangre , Aceites de Plantas/metabolismo , Aceite de Soja/metabolismo , Ácido gammalinolénico/sangre , Ácido 8,11,14-Eicosatrienoico/sangre , Adulto , Anciano , Estudios de Cohortes , delta-5 Desaturasa de Ácido Graso , Método Doble Ciego , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/sangre , Femenino , Genotipo , Humanos , Lípidos/sangre , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Población Blanca/genética , Adulto Joven , Ácido gammalinolénico/metabolismo
2.
Nutrients ; 9(11)2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29068398

RESUMEN

BACKGROUND: Dietary essential omega-6 (n-6) and omega-3 (n-3) 18 carbon (18C-) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), can be converted (utilizing desaturase and elongase enzymes encoded by FADS and ELOVL genes) to biologically-active long chain (LC; >20)-PUFAs by numerous cells and tissues. These n-6 and n-3 LC-PUFAs and their metabolites (ex, eicosanoids and endocannabinoids) play critical signaling and structural roles in almost all physiologic and pathophysiologic processes. METHODS: This review summarizes: (1) the biosynthesis, metabolism and roles of LC-PUFAs; (2) the potential impact of rapidly altering the intake of dietary LA and ALA; (3) the genetics and evolution of LC-PUFA biosynthesis; (4) Gene-diet interactions that may lead to excess levels of n-6 LC-PUFAs and deficiencies of n-3 LC-PUFAs; and (5) opportunities for precision nutrition approaches to personalize n-3 LC-PUFA supplementation for individuals and populations. CONCLUSIONS: The rapid nature of transitions in 18C-PUFA exposure together with the genetic variation in the LC-PUFA biosynthetic pathway found in different populations make mal-adaptations a likely outcome of our current nutritional environment. Understanding this genetic variation in the context of 18C-PUFA dietary exposure should enable the development of individualized n-3 LC-PUFA supplementation regimens to prevent and manage human disease.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos Omega-3/administración & dosificación , Enfermedades no Transmisibles/prevención & control , Dieta , Ácido Graso Desaturasas/sangre , Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-3/sangre , Ácidos Grasos Omega-3/deficiencia , Ácidos Grasos Omega-6/administración & dosificación , Ácidos Grasos Omega-6/sangre , Ácidos Grasos Omega-6/deficiencia , Humanos , Inflamación/sangre , Inflamación/prevención & control , Ácido Linoleico/administración & dosificación , Ácido Linoleico/sangre , Estado Nutricional , Ácido alfa-Linolénico/administración & dosificación , Ácido alfa-Linolénico/sangre
3.
Am J Physiol Lung Cell Mol Physiol ; 302(2): L257-65, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22037357

RESUMEN

Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A(2) (sPLA(2)) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA(2) exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-A) alters sPLA(2)-mediated hydrolysis. This report tests the hypothesis that hydrophobic SP-B also inhibits sPLA(2)-mediated surfactant hydrolysis. Three surfactant preparations were used containing varied amounts of SP-B and radiolabeled tracers of phosphatidylcholine (PC) or phosphatidylglycerol (PG): 1) washed ovine surfactant (OS) (pre- and postorganic extraction) compared with Survanta (protein poor), 2) Survanta supplemented with purified bovine SP-B (1-5%, wt/wt), and 3) a mixture of dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) (DPPC:POPC:POPG, 40:40:20) prepared as vesicles and monomolecular films in the presence or absence of SP-B. Hydrolysis of PG and PC by Group IB sPLA(2) (PLA2G1A) was significantly lower in the extracted OS, which contains SP-B, compared with Survanta (P = 0.005), which is SP-B poor. Hydrolysis of PG and PC in nonextracted OS, which contains all SPs, was lower than both Survanta and extracted OS. When Survanta was supplemented with 1% SP-B, PG and PC hydrolysis by PLA2G1B was significantly lower (P < 0.001) than in Survanta alone. When supplemented into pure lipid vesicles and monomolecular films composed of PG and PC mixtures, SP-B also inhibited hydrolysis by both PLA2G1B and Group IIA sPLA2 (PLA2G2A). In films, PLA2G1B hydrolyzed surfactant PL monolayers at surface pressures ≤30 mN/m (P < 0.01), and SP-B lowered the surface pressure range at which hydrolysis can occur. These results suggest the hydrophobic SP, SP-B, protects alveolar surfactant PL from hydrolysis mediated by multiple sPLA(2) in both vesicles (alveolar subphase) and monomolecular films (air-liquid interface).


Asunto(s)
Fosfolipasas A2 Grupo IA/metabolismo , Fosfolipasas A2 Grupo IB/metabolismo , Fosfolípidos/metabolismo , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Bovinos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Fosfatidilcolinas/metabolismo , Fosfatidilgliceroles/metabolismo , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/química , Síndrome de Dificultad Respiratoria/patología , Ovinos
4.
Am J Clin Nutr ; 87(2): 498S-503S, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18258646

RESUMEN

Changes in diet over the past century have markedly altered the consumption of fatty acids. The dramatic increase in the ingestion of saturated and n-6 fatty acids and concomitant decrease in n-3 fatty acids are thought to be a major driver of the increase in the incidence of inflammatory diseases such as asthma, allergy, and atherosclerosis. The central objective of the Center for Botanical Lipids at Wake Forest University School of Medicine and the Brigham and Women's Hospital is to delineate the mechanisms by which fatty acid-based dietary supplements inhibit inflammation leading to chronic human diseases such as cardiovascular disease and asthma. The key question that this center addresses is whether botanical n-6 and n-3 fatty acids directly block recognized biochemical pathways or the expression of critical genes that lead to asthma and atherosclerosis. Dietary supplementation with flaxseed oil, borage oil, and echium oil affects the biochemistry of fatty acid metabolism and thus the balance of proinflammatory mediators and atherogenic lipids. Supplementation studies have begun to identify key molecular and genetic mechanisms that regulate the production of lipid mediators involved in inflammatory and hyperlipidemic diseases. Echium oil and other oils containing stearidonic acid as well as botanical oil combinations (such as echium and borage oils) hold great promise for modulating inflammatory diseases.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Hiperlipidemias/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Aceites de Plantas/administración & dosificación , Animales , Asma/prevención & control , Aterosclerosis/prevención & control , Colesterol/sangre , Enfermedad Crónica , Grasas Insaturadas en la Dieta/administración & dosificación , Suplementos Dietéticos , Echium , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/inducido químicamente , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Hiperlipidemias/prevención & control , Inflamación/sangre , Inflamación/inducido químicamente , Inflamación/complicaciones , Inflamación/metabolismo , Aceite de Linaza/administración & dosificación , Transducción de Señal , Triglicéridos/sangre , Ácido gammalinolénico/administración & dosificación
5.
Biochim Biophys Acta ; 1720(1-2): 14-21, 2005 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-16376294

RESUMEN

Secretory A(2) phospholipases (sPLA(2)) hydrolyze surfactant phospholipids cause surfactant dysfunction and are elevated in lung inflammation. Phospholipase-mediated surfactant hydrolysis may disrupt surfactant function by generation of lysophospholipids and free fatty acids and/or depletion of native phospholipids. In this study, we quantitatively assessed multiple mechanisms of sPLA(2)-mediated surfactant dysfunction using non-enzymatic models including supplementation of surfactants with exogenous lysophospholipids and free fatty acids. Our data demonstrated lysophospholipids at levels >or=10 mol% of total phospholipid (i.e., >or=10% hydrolysis) led to a significant increase in minimum surface tension and increased the time to achieve a normal minimum surface tension. Lysophospholipid inhibition of surfactant function was independent of the lysophospholipid head group or total phospholipid concentration. Free fatty acids (palmitic acid, oleic acid) alone had little effect on minimum surface tension, but did increase the maximum surface tension and the time to achieve normal minimum surface tension. The combined effect of equimolar free fatty acids and lysophospholipids was not different from the effect of lysophospholipids alone for any measurement of surfactant function. Surfactant proteins did not change the percent lysophospholipids required to increase minimum surface tension. As a mechanism that causes surfactant dysfunction, depletion of native phospholipids required much greater change (equivalent to >80% hydrolysis) than generation of lysophospholipids. In summary, generation of lysophospholipids is the principal mechanism of phospholipase-mediated surfactant injury in our non-enzymatic models. These models and findings will assist in understanding more complex in vitro and in vivo studies of phospholipase-mediated surfactant injury.


Asunto(s)
Ácidos Grasos/farmacología , Lisofosfolípidos/farmacología , Fosfolipasas A/metabolismo , Surfactantes Pulmonares/antagonistas & inhibidores , Animales , Modelos Químicos , Fosfolipasas A2 , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Tensión Superficial/efectos de los fármacos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA