Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 50(12): 2249-63, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21329368

RESUMEN

Apolipoprotein (apo) A-I-containing lipoproteins in the form of high-density lipoproteins (HDL) are inversely correlated with atherosclerosis. Because HDL is a soft form of condensed matter easily deformable by thermal fluctuations, the molecular mechanisms for HDL remodeling are not well understood. A promising approach to understanding HDL structure and dynamics is molecular dynamics (MD). In the present study, two computational strategies, MD simulated annealing (MDSA) and MD temperature jump, were combined with experimental particle reconstitution to explore molecular mechanisms for phospholipid- (PL-) rich HDL particle remodeling. The N-terminal domains of full-length apoA-I were shown to be "sticky", acting as a molecular latch largely driven by salt bridges, until, at a critical threshold of particle size, the associated domains released to expose extensive hydrocarbon regions of the PL to solvent. The "sticky" N-termini also associate with other apoA-I domains, perhaps being involved in N-terminal loops suggested by other laboratories. Alternatively, the overlapping helix 10 C-terminal domains of apoA-I were observed to be extremely mobile or "promiscuous", transiently exposing limited hydrocarbon regions of PL. Based upon these models and reconstitution studies, we propose that separation of the N-terminal domains, as particles exceed a critical size, triggers fusion between particles or between particles and membranes, while the C-terminal domains of apoA-I drive the exchange of polar lipids down concentration gradients between particles. This hypothesis has significant biological relevance since lipid exchange and particle remodeling are critically important processes during metabolism of HDL particles at every step in the antiatherogenic process of reverse cholesterol transport.


Asunto(s)
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Simulación por Computador , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Colesterol/química , Colesterol/metabolismo , Humanos , Fusión de Membrana , Datos de Secuencia Molecular , Tamaño de la Partícula , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Temperatura
2.
J Biol Chem ; 283(43): 29251-65, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18725409

RESUMEN

We previously demonstrated that a portion, or perhaps all, of the residues between 931 and 1000 of apolipoprotein (apo) B100 are required for the initiation of apoB-containing particle assembly. Based on our structural model of the first 1000 residues of apoB (designated as apoB:1000), we hypothesized that this domain folds into a three-sided lipovitellin-like "lipid pocket" via a hairpin-bridge mechanism. We proposed that salt bridges are formed between four tandem charged residues 717-720 in the turn of the hairpin bridge and four tandem complementary residues 997-1000 located at the C-terminal end of the model. To identify the specific motif within residues 931 and 1000 that is critical for apoB particle assembly, apoB:956 and apoB:986 were produced. To test the hairpin-bridge hypothesis, the following mutations were made: 1) residues 997-1000 deletion (apoB:996), 2) residues 717-720 deletion (apoB:1000Delta717-720), and 3) substitution of charged residues 997-1000 with alanines (apoB:996 + 4Ala). Characterization of particles secreted by stable transformants of McA-RH7777 cells demonstrated the following. 1) ApoB:956 did not form stable particles and was secreted as large lipid-rich aggregates. 2) ApoB:986 formed both a lipidated particle that was denser than HDL(3) and large lipid-rich aggregates. 3) Compared with wild-type apoB:1000, apoB:1000Delta717-720 displayed the following: (i) significantly diminished capacity to form intact lipidated particles and (ii) increased propensity to form large lipid-rich aggregates. 4) In striking contrast to wild-type apoB:1000, (i) apoB:996 and apoB:996 + 4Ala were highly susceptible to intracellular degradation, (ii) only a small proportion of the secreted proteins formed stable HDL(3)-like lipoproteins, and (iii) a majority of the secreted proteins formed large lipid-rich aggregates. We conclude that the first 1000 amino acid residues of human apoB100 are required for the initiation of nascent apoB-containing lipoprotein assembly, and residues 717-720 and 997-1000 play key roles in this process, perhaps via a hairpin-bridge mechanism.


Asunto(s)
Apolipoproteína B-100/química , Lipoproteínas/química , Alanina/química , Aminoácidos/química , Animales , Línea Celular Tumoral , Humanos , Lipoproteínas LDL/química , Modelos Biológicos , Modelos Genéticos , Conformación Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Ratas
3.
Biophys J ; 88(4): 2789-800, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15653747

RESUMEN

Apolipoprotein B (apoB) is the major protein component of large lipoprotein particles that transport lipids and cholesterol. We have developed a detailed model of the first 1000 residues of apoB using standard sequence alignment programs (ClustalW and MACAW) and the MODELLER6 package for three-dimensional homology modeling. The validity of the apoB model was supported by conservation of disulfide bonds, location of all proline residues in turns and loops, and conservation of the hydrophobic faces of the two C-terminal amphipathic beta-sheets, betaA (residues 600-763) and betaB (residues 780-1000). This model suggests a lipid-pocket mechanism for initiation of lipoprotein particle assembly. In a previous model we suggested that microsomal triglyceride transfer protein might play a structural role in completion of the lipid pocket. We no longer think this likely, but instead propose a hairpin-bridge mechanism for lipid pocket completion. Salt-bridges between four tandem charged residues (717-720) in the turn of the hairpin-bridge and four tandem complementary residues (997-1000) at the C-terminus of the model lock the bridge in the closed position, enabling the deposition of an asymmetric bilayer within the lipid pocket.


Asunto(s)
Apolipoproteínas B/química , Biofisica/métodos , Lipoproteínas/química , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Pollos , Colesterol/química , Biología Computacional/métodos , Cisteína/química , Bases de Datos de Proteínas , Disulfuros/química , Fundulidae , Humanos , Lemur , Membrana Dobles de Lípidos/química , Lípidos/química , Ratones , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Prolina/química , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Conejos , Ranidae , Sales (Química)/farmacología , Homología de Secuencia de Aminoácido , Programas Informáticos , Tilapia/metabolismo , Trucha
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA