RESUMEN
Drug combinations that target critical pathways are a mainstay of cancer care. To improve current approaches to combination treatment of chronic lymphocytic leukemia (CLL) and gain insights into the underlying biology, we studied the effect of 352 drug combination pairs in multiple concentrations by analysing ex vivo drug response of 52 primary CLL samples, which were characterized by "omics" profiling. Known synergistic interactions were confirmed for B-cell receptor (BCR) inhibitors with Bcl-2 inhibitors and with chemotherapeutic drugs, suggesting that this approach can identify clinically useful combinations. Moreover, we uncovered synergistic interactions between BCR inhibitors and afatinib, which we attribute to BCR activation by afatinib through BLK upstream of BTK and PI3K. Combinations of multiple inhibitors of BCR components (e.g., BTK, PI3K, SYK) had effects similar to the single agents. While PI3K and BTK inhibitors produced overall similar effects in combinations with other drugs, we uncovered a larger response heterogeneity of combinations including PI3K inhibitors, predominantly in CLL with mutated IGHV, which we attribute to the target's position within the BCR-signaling pathway. Taken together, our study shows that drug combination effects can be effectively queried in primary cancer cells, which could aid discovery, triage and clinical development of drug combinations.
Asunto(s)
Antineoplásicos/farmacología , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos/genética , Leucemia Linfocítica Crónica de Células B/genética , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Sinergismo Farmacológico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Cultivo Primario de Células , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores de Antígenos de Linfocitos B/antagonistas & inhibidores , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Reproducibilidad de los ResultadosRESUMEN
Enhanced in vivo expansion, long-term persistence of chimeric antigen receptor T (CART) cells, and efficient tumor eradication through these cells are linked to the proportion of less-differentiated cells in the CART cell product. Retronectin is well established as an adjuvant for improved retroviral transduction, while its property to enrich less-differentiated T cells is less known. In order to increase these subsets, this study investigated the effects of retronectin-mediated T-cell activation for CD19-specific CART cell production. Peripheral blood mononuclear cells of healthy donors and untreated chronic lymphocytic leukemia (CLL) patients without or with positive selection for CD3+ T cells were transduced with a CD19.CAR.CD28.CD137zeta third-generation retroviral vector. Activation of peripheral blood mononuclear cells was performed by CD3/CD28, CD3/CD28/retronectin, or CD3/retronectin. Interleukin-7 and -15 were supplemented to all cultures. Retronectin was used in all three activation protocols for retroviral transduction. Expansion was assessed by trypan blue staining. Viability, transduction efficiency, immune phenotype, and cytokine production were longitudinally analyzed by flow cytometry. Cytotoxic capacity of generated CART cells was evaluated using a classical chromium-51 release assay. Retronectin-mediated activation resulted in an enrichment of CD8+ cytotoxic CART cells and less-differentiated naïve-like T cells (CD45RA+CCR7+). Retronectin-activated CART cells showed increased cytotoxic activity. However, activation with retronectin decreased viability, expansion, transduction efficiency, and cytokine production, particularly of CLL patient-derived CART cells. Both retronectin-mediated activation protocols promoted a less-differentiated CART cell phenotype without comprising cytotoxic properties of healthy donor-derived CART cells. However, up-front retronectin resulted in reduced viability and expansion in CLL patients. This effect is probably attributed to the retronectin-mediated activation of B cells with prolonged CLL persistence. Consequently, CART cell expansion and generation failed. In summary, activation with retronectin should be performed with caution and may be limited to patients without a higher percentage of tumor cells in the peripheral blood.