Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 45, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167725

RESUMEN

Dietary polyunsaturated fatty acids (PUFA) are increasingly recognized for their health benefits, whereas a high production of endogenous fatty acids - a process called de novo lipogenesis (DNL) - is closely linked to metabolic diseases. Determinants of PUFA incorporation into complex lipids are insufficiently understood and may influence the onset and progression of metabolic diseases. Here we show that fatty acid synthase (FASN), the key enzyme of DNL, critically determines the use of dietary PUFA in mice and humans. Moreover, the combination of FASN inhibition and PUFA-supplementation decreases liver triacylglycerols (TAG) in mice fed with high-fat diet. Mechanistically, FASN inhibition causes higher PUFA uptake via the lysophosphatidylcholine transporter MFSD2A, and a diacylglycerol O-acyltransferase 2 (DGAT2)-dependent incorporation of PUFA into TAG. Overall, the outcome of PUFA supplementation may depend on the degree of endogenous DNL and combining PUFA supplementation and FASN inhibition might be a promising approach to target metabolic disease.


Asunto(s)
Ácidos Grasos Omega-3 , Enfermedades Metabólicas , Ratones , Humanos , Animales , Lipogénesis , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados , Triglicéridos/metabolismo , Ácidos Grasos , Dieta Alta en Grasa/efectos adversos
2.
J Biol Chem ; 286(35): 30949-30961, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21757749

RESUMEN

Fatty acid synthase (FAS) promotes energy storage through de novo lipogenesis and participates in signaling by the nuclear receptor PPARα in noncardiac tissues. To determine if de novo lipogenesis is relevant to cardiac physiology, we generated and characterized FAS knockout in the myocardium (FASKard) mice. FASKard mice develop normally, manifest normal resting heart function, and have normal cardiac PPARα signaling as well as fatty acid oxidation. However, they decompensate with stress. Most die within 1 h of transverse aortic constriction, probably due to arrhythmia. Voltage clamp measurements of FASKard cardiomyocytes show hyperactivation of L-type calcium channel current that could not be reversed with palmitate supplementation. Of the classic regulators of this current, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) but not protein kinase A signaling is activated in FASKard hearts, and knockdown of FAS in cultured cells activates CaMKII. In addition to being intolerant of the stress of acute pressure, FASKard hearts were also intolerant of the stress of aging, reflected as persistent CaMKII hyperactivation, progression to dilatation, and premature death by ∼1 year of age. CaMKII signaling appears to be pathogenic in FASKard hearts because inhibition of its signaling in vivo rescues mice from early mortality after transverse aortic constriction. FAS was also increased in two mechanistically distinct mouse models of heart failure and in the hearts of humans with end stage cardiomyopathy. These data implicate a novel relationship between FAS and calcium signaling in the heart and suggest that FAS induction in stressed myocardium represents a compensatory response to protect cardiomyocytes from pathological calcium flux.


Asunto(s)
Ácido Graso Sintasas/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cruzamientos Genéticos , Ecocardiografía/métodos , Femenino , Genotipo , Lipogénesis , Masculino , Ratones , Modelos Biológicos , Miocardio/metabolismo , Especificidad por Sustrato
3.
J Lipid Res ; 50(4): 630-40, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19029118

RESUMEN

Obesity promotes insulin resistance and chronic inflammation. Disrupting any of several distinct steps in lipid synthesis decreases adiposity, but it is unclear if this approach coordinately corrects the environment that propagates metabolic disease. We tested the hypothesis that inactivation of FAS in the hypothalamus prevents diet-induced obesity and systemic inflammation. Ten weeks of high-fat feeding to mice with inactivation of FAS (FASKO) limited to the hypothalamus and pancreatic beta cells protected them from diet-induced obesity. Though high-fat fed FASKO mice had no beta-cell phenotype, they were hypophagic and hypermetabolic, and they had increased insulin sensitivity at the liver but not the periphery as demonstrated by hyperinsulinemic-euglycemic clamps, and biochemically by increased phosphorylated Akt, glycogen synthase kinase-3beta, and FOXO1 compared with wild-type mice. High-fat fed FASKO mice had decreased excretion of urinary isoprostanes, suggesting less oxidative stress and blunted tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) responses to endotoxin, suggesting less systemic inflammation. Pair-feeding studies demonstrated that these beneficial effects were dependent on central FAS disruption and not merely a consequence of decreased adiposity. Thus, inducing central FAS deficiency may be a valuable integrative strategy for treating several components of the metabolic syndrome, in part by correcting hepatic insulin resistance and suppressing inflammation.


Asunto(s)
Acido Graso Sintasa Tipo I/deficiencia , Hipotálamo/enzimología , Inflamación/prevención & control , Obesidad/prevención & control , Animales , Grasas de la Dieta/administración & dosificación , Acido Graso Sintasa Tipo I/genética , Hígado Graso/enzimología , Hígado Graso/prevención & control , Femenino , Glucosa/metabolismo , Homeostasis , Técnicas In Vitro , Inflamación/enzimología , Inflamación/etiología , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Obesidad/enzimología , Obesidad/etiología , Estrés Oxidativo , Aumento de Peso
4.
Cell Metab ; 1(2): 133-44, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16054054

RESUMEN

The role of the peroxisome proliferator-activated receptor-alpha (PPARalpha) in the development of insulin-resistant diabetes was evaluated using gain- and loss-of-function approaches. Transgenic mice overexpressing PPARalpha in muscle (MCK-PPARalpha mice) developed glucose intolerance despite being protected from diet-induced obesity. Conversely, PPARalpha null mice were protected from diet-induced insulin resistance in the context of obesity. In skeletal muscle, MCK-PPARalpha mice exhibited increased fatty acid oxidation rates, diminished AMP-activated protein kinase activity, and reduced insulin-stimulated glucose uptake without alterations in the phosphorylation status of key insulin-signaling proteins. These effects on muscle glucose uptake involved transcriptional repression of the GLUT4 gene. Pharmacologic inhibition of fatty acid oxidation or mitochondrial respiratory coupling prevented the effects of PPARalpha on GLUT4 expression and glucose homeostasis. These results identify PPARalpha-driven alterations in muscle fatty acid oxidation and energetics as a potential link between obesity and the development of glucose intolerance and insulin resistance.


Asunto(s)
Diabetes Mellitus/metabolismo , Músculos/metabolismo , Obesidad/metabolismo , PPAR alfa/metabolismo , Animales , Northern Blotting , Western Blotting , ADN Complementario/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Glucosa/farmacocinética , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculos/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxígeno/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas , Fosforilación , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Tiempo , Transcripción Genética
5.
J Biol Chem ; 280(10): 9023-9, 2005 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-15637076

RESUMEN

Lipid and glucose metabolism are adversely affected by diabetes, a disease characterized by pancreatic beta-cell dysfunction. To clarify the role of lipids in insulin secretion, we generated mice with beta-cell-specific overexpression (betaLPL-TG) or inactivation (betaLPL-KO) of lipoprotein lipase (LPL), a physiologic provider of fatty acids. LPL enzyme activity and triglyceride content were increased in betaLPL-TG islets; decreased LPL enzyme activity in betaLPL-KO islets did not affect islet triglyceride content. Surprisingly, both betaLPL-TG and betaLPL-KO mice were strikingly hyperglycemic during glucose tolerance testing. Impaired glucose tolerance in betaLPL-KO mice was present at one month of age, whereas betaLPL-TG mice did not develop defective glucose homeostasis until approximately five months of age. Glucose-simulated insulin secretion was impaired in islets isolated from both mouse models. Glucose oxidation, critical for ATP production and triggering of insulin secretion mediated by the ATP-sensitive potassium (KATP) channel, was decreased in betaLPL-TG islets but increased in betaLPL-KO islets. Islet ATP content was not decreased in either model. Insulin secretion was defective in both betaLPL-TG and betaLPL-KO islets under conditions causing calcium-dependent insulin secretion independent of the KATP channel. These results show that beta-cell-derived LPL has two physiologically relevant effects in islets, the inverse regulation of glucose metabolism and the independent mediation of insulin secretion through effects distal to membrane depolarization.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/fisiología , Lipoproteína Lipasa/metabolismo , Animales , Membrana Celular/fisiología , ADN Complementario , Glucosa/farmacología , Humanos , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Cinética , Lipoproteína Lipasa/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Valores de Referencia , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA