Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Cancer Res ; 24(20): 4976-4987, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29967252

RESUMEN

Purpose: Noninvasive and quantitative tracking of CD8+ T cells by PET has emerged as a potential technique to gauge response to immunotherapy. We apply an anti-CD8 cys-diabody, labeled with 64Cu, to assess the sensitivity of PET imaging of normal and diseased tissue.Experimental Design: Radiolabeling of an anti-CD8 cys-diabody (169cDb) with 64Cu was developed. The accumulation of 64Cu-169cDb was evaluated with PET/CT imaging (0, 5, and 24 hours) and biodistribution (24 hours) in wild-type mouse strains (n = 8/group studied with imaging and IHC or flow cytometry) after intravenous administration. Tumor-infiltrating CD8+ T cells in tumor-bearing mice treated with CpG and αPD-1 were quantified and mapped (n = 6-8/group studied with imaging and IHC or flow cytometry).Results: We demonstrate the ability of immunoPET to detect small differences in CD8+ T-cell distribution between mouse strains and across lymphoid tissues, including the intestinal tract of normal mice. In FVB mice bearing a syngeneic HER2-driven model of mammary adenocarcinoma (NDL), 64Cu-169cDb PET imaging accurately visualized and quantified changes in tumor-infiltrating CD8+ T cells in response to immunotherapy. A reduction in the circulation time of the imaging probe followed the development of treatment-related liver and splenic hypertrophy and provided an indication of off-target effects associated with immunotherapy protocols.Conclusions: 64Cu-169cDb imaging can spatially map the distribution of CD8+ T cells in normal organs and tumors. ImmunoPET imaging of tumor-infiltrating cytotoxic CD8+ T cells detected changes in T-cell density resulting from adjuvant and checkpoint immunotherapy protocols in our preclinical evaluation. Clin Cancer Res; 24(20); 4976-87. ©2018 AACR.


Asunto(s)
Anticuerpos Monoclonales , Linfocitos T CD8-positivos/metabolismo , Radioisótopos de Cobre , Recuento de Linfocitos , Imagen Molecular , Tomografía de Emisión de Positrones , Animales , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Humanos , Inmunoterapia , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Imagen Molecular/métodos , Neoplasias/diagnóstico , Neoplasias/inmunología , Neoplasias/terapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Med Phys ; 40(8): 083301, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23927360

RESUMEN

PURPOSE: Ultrasound-induced mild hyperthermia has advantages for noninvasive, localized and controlled drug delivery. In this study, a tissue-mimicking agarose-based phantom with a thermally sensitive indicator was developed for studying the spatial drug delivery profile using ultrasound-induced mild hyperthermia. METHODS: Agarose powder, regular evaporated milk, Dulbecco's phosphate-buffered saline (DPBS), n-propanol, and silicon carbide powder were homogeneously mixed with low temperature sensitive liposomes (LTSLs) loaded with a self-quenched near-infrared (NIR) fluorescent dye. A dual-mode linear array ultrasound transducer was used for insonation at 1.54 MHz with a total acoustic power and acoustic pressure of 2.0 W and 1.5 MPa, respectively. After insonation, the dye release pattern in the phantom was quantified based on optical images, and the three-dimensional release profile was reconstructed and analyzed. A finite-difference time-domain-based algorithm was developed to simulate both the temperature distribution and spatial dye diffusion as a function of time. Finally, the simulated dye diffusion patterns were compared to experimental measurements. RESULTS: Self-quenching of the fluorescent dye in DPBS was substantial at a concentration of 6.25×10(-2) mM or greater. The transition temperature of LTSLs in the phantom was 35 °C, and the release reached 90% at 37 °C. The simulated temperature for hyperthermia correlated with the thermocouple measurements with a mean error between 0.03±0.01 and 0.06±0.02 °C. The R2 value between the experimental and simulated spatial extent of the dye diffusion, defined by the half-peak level in the elevation, lateral and depth directions, was 0.99 (slope=1.08), 0.95 (slope=0.99), and 0.80 (slope=1.04), respectively, indicating the experimental and simulated dye release profiles were similar. CONCLUSIONS: The combination of LTSLs encapsulating a fluorescent dye and an optically transparent phantom is useful for visualizing and modeling drug release in vitro following ultrasound-induced mild hyperthermia. The coupled temperature simulation and dye-diffusion simulation tools were validated with the experimental system and can be used to optimize the thermal dose and spatial and temporal dye release pattern.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Hipertermia Inducida , Fantasmas de Imagen , Ultrasonido , Tampones (Química) , Carbocianinas/química , Difusión , Colorantes Fluorescentes/química , Liposomas , Imagen Óptica , Fosfatos/química , Fosfatidilcolinas/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA