Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 15(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571262

RESUMEN

This study investigated the acute effects of natural antioxidants, derived from yeast fermentation containing glutathione and dietary vitamin C supplementation, on metabolic function, skeletal muscle oxygenation, cardiac function, and antioxidant function during submaximal exercise in middle-aged triathlon athletes. Twelve participants (aged 49.42 ± 5.9 years) completed 90 min submaximal cycling trials corresponding to 70% maximal oxygen uptake with either vitamin C and glutathione (VitC+Glu), vitamin C (VitC), glutathione (Glu) supplementation, or placebo. Metabolic function (minute ventilation, oxygen uptake, carbon dioxide output [VCO2], respiratory exchange ratio [RER], oxygen pulse [O2pulse], carbohydrate oxidation, fat oxidation, and energy expenditure), skeletal muscle oxygenation (oxidized hemoglobin and myoglobin in skeletal muscle tissue, total hemoglobin and myoglobin in skeletal muscle tissue [tHb]), cardiac function (heart rate [HR], stroke volume [SV], cardiac output, end-diastolic volume, end-systolic volume, and ejection fraction), and antioxidant function parameters (blood lactate, superoxide dismutase, catalase, glutathione peroxidases, glutathione [GSH], diacron reactive oxygen metabolite [dROM], and biological antioxidant potential [BAP]) were measured during submaximal exercise and recovery. VCO2, RER, HR, blood lactate after exercise, and dROM were significantly lower, and O2pulse, tHb, and BAP were significantly higher for VitC+Glu than for the other trials (p < 0.05). In conclusion, combined vitamin C and glutathione supplementation was more effective in improving metabolic function, skeletal oxygenation, cardiac function, and antioxidant function during prolonged submaximal exercise in middle-aged triathletes.


Asunto(s)
Antioxidantes , Rendimiento Atlético , Humanos , Persona de Mediana Edad , Antioxidantes/farmacología , Ácido Ascórbico , Saccharomyces cerevisiae/metabolismo , Estudios Cruzados , Fermentación , Mioglobina/metabolismo , Vitaminas/farmacología , Glutatión/metabolismo , Músculo Esquelético/metabolismo , Atletas , Oxígeno/metabolismo , Lactatos/metabolismo , Suplementos Dietéticos
2.
Nutrients ; 15(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904267

RESUMEN

The global market for nutritional supplements (NS) is growing rapidly, and the use of L-arginine (Arg), L-citrulline (Cit), and citrulline malate (CitMal) supplements has been shown to enhance cardiovascular health and athletic performance. Over the past decade, Arg, Cit, and CitMal supplements have received considerable attention from researchers in the field of exercise nutrition, who have investigated their potential effects on hemodynamic function, endothelial function, aerobic and anaerobic capacity, strength, power, and endurance. Previous studies were reviewed to determine the potential impact of Arg, Cit, and CitMal supplements on cardiovascular health and exercise performance. By synthesizing the existing literature, the study aimed to provide insight into the possible uses and limitations of these supplements for these purposes. The results showed that both recreational and trained athletes did not see improved physical performance or increased nitric oxide (NO) synthesis with 0.075 g or 6 g doses of Arg supplement per body weight. However, 2.4 to 6 g of Cit per day for 7 to 16 days of various NSs had a positive impact, increasing NO synthesis, enhancing athletic performance indicators, and reducing feelings of exertion. The effects of an 8 g acute dose of CitMal supplement were inconsistent, and more research is needed to determine its impact on muscle endurance performance. Based on the positive effects reported in previous studies, further testing is warranted in various populations that may benefit from nutritional supplements, including aerobic and anaerobic athletes, resistance-trained individuals, elderly people, and clinical populations, to determine the impact of different doses, timing of ingestion, and long-term and acute effects of Arg, Cit, and CitMal supplements on cardiovascular health and athletic performance.


Asunto(s)
Rendimiento Atlético , Citrulina , Humanos , Anciano , Citrulina/farmacología , Arginina/farmacología , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA