Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 7(1): 627, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28377608

RESUMEN

Repetitive transorbital alternating current stimulation (rtACS) improves vision in patients with chronic visual impairments and an acute treatment increased survival of retinal neurons after optic nerve crush (ONC) in rodent models of visual system injury. However, despite this protection no functional recovery could be detected in rats, which was interpreted as evidence of "silent survivor" cells. We now analysed the mechanisms underlying this "silent survival" effect. Using in vivo microscopy of the retina we investigated the survival and morphology of fluorescent neurons before and after ONC in animals receiving rtACS or sham treatment. One week after the crush, more neurons survived in the rtACS-treated group compared to sham-treated controls. In vivo imaging further revealed that in the initial post-ONC period, rtACS induced dendritic pruning in surviving neurons. In contrast, dendrites in untreated retinae degenerated slowly after the axonal trauma and neurons died. The complete loss of visual evoked potentials supports the hypothesis that cell signalling is abolished in the surviving neurons. Despite this evidence of "silencing", intracellular free calcium imaging showed that the cells were still viable. We propose that early after trauma, complete dendritic stripping following rtACS protects neurons from excitotoxic cell death by silencing them.


Asunto(s)
Supervivencia Celular , Dendritas/metabolismo , Estimulación Eléctrica , Neuronas/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Animales , Axones/metabolismo , Muerte Celular , Modelos Animales de Enfermedad , Terapia por Estimulación Eléctrica , Potenciales Evocados Visuales , Ratones , Microscopía Confocal , Plasticidad Neuronal , Traumatismos del Nervio Óptico/etiología , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/terapia , Ratas , Retina/citología , Retina/metabolismo
2.
Restor Neurol Neurosci ; 33(5): 761-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25813371

RESUMEN

PURPOSE: Transcorneal alternating current stimulation (tACS) has become a promising tool to modulate brain functions and treat visual diseases. To understand the mechanisms of action a suitable animal model is required. However, because existing animal models employ narcosis, which interferes with brain oscillations and stimulation effects, we developed an experimental setup where current stimulation via the eye and flicker light stimulation can be applied while simultaneously recording local field potentials in awake rats. METHOD: tACS was applied in freely-moving rats (N = 24) which had wires implanted under their upper eye lids. Field potential recordings were made in visual cortex and superior colliculus. To measure visual evoked responses, rats were exposed to flicker-light using LEDs positioned in headset spectacles. RESULTS: Corneal electrodes and recording assemblies were reliably operating and well tolerated for at least 4 weeks. Transcorneal stimulation without narcosis did not induce any adverse reactions. Stable head stages allowed repetitive and long-lasting recordings of visual and electrically evoked potentials in freely moving animals. Shape and latencies of electrically evoked responses measured in the superior colliculus and visual cortex indicate that specific physiological responses could be recorded after tACS. CONCLUSIONS: Our setup allows the stimulation of the visual system in unanaesthetised rodents with flicker light and transcorneally applied current travelling along the physiological signalling pathway. This methodology provides the experimental basis for further studies of recovery and restoration of vision.


Asunto(s)
Córnea/fisiología , Terapia por Estimulación Eléctrica/métodos , Modelos Animales , Animales , Terapia por Estimulación Eléctrica/efectos adversos , Terapia por Estimulación Eléctrica/instrumentación , Potenciales Evocados , Párpados , Neuroestimuladores Implantables/efectos adversos , Estimulación Luminosa , Ratas , Colículos Superiores/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología
3.
Invest Ophthalmol Vis Sci ; 56(3): 1711-8, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25650414

RESUMEN

PURPOSE: Little is known about the physiological mechanisms underlying the reported therapeutic effects of transorbital alternating current stimulation (ACS) in vision restoration, or the origin of the recorded electrically evoked potentials (EEPs) during such stimulation. We examined the issue of EEP origin and electrode configuration for transorbital ACS and characterized the physiological responses to CS in different structures of the visual system. METHODS: We recorded visually evoked potentials (VEPs) and EEPs from the rat retina, visual thalamus, tectum, and visual cortex. The VEPs were evoked by light flashes and EEPs were evoked by electric stimuli delivered by two electrodes placed either together on the same eye or on the eyeball and in the neck. Electrically evoked potentials and VEPs were recorded before and after bilateral intraorbital injections of tetrodotoxin that blocked retinal ganglion cell activity. RESULTS: Tetrodotoxin abolished VEPs at all levels in the visual pathway, confirming successful blockage of ganglion cell activity. Tetrodotoxin also abolished EEPs and this effect was independent of the stimulating electrode configurations. CONCLUSIONS: Transorbital electrically evoked responses in the visual pathway, irrespective of reference electrode placement, are initiated by activation of the retina and not by passive conductance and direct activation of neurons in other visual structures. Thus, placement of stimulating electrodes exclusively around the eyeball may be sufficient to achieve therapeutic effects.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Potenciales Evocados Visuales/fisiología , Retina/fisiopatología , Vías Visuales/fisiopatología , Animales , Córnea/fisiopatología , Femenino , Masculino , Estimulación Luminosa , Ratas , Ratas Wistar , Colículos Superiores/fisiopatología , Tálamo/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA