Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 13: 995491, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714560

RESUMEN

Introduction: DEHP is an endocrine disruptor widely used in the production of malleable plastics. DEHP exposure was associated with altered hypothalamic-pituitary-thyroid (HPT) axis function. Although previous studies reported deleterious effects of DEHP exposure during the intrauterine period, few studies have evaluated the direct effects triggered by this endocrine disruptor on the offspring animals' thyroid function. This study aimed to investigate the impact of intrauterine exposure to DEHP on the HPT axis function programming of the offspring animals during adulthood. Methods: Pregnant Wistar rats were orally treated with corn oil or corn oil supplemented with DEHP (0.48 or 4.8 mg/kg/day) throughout the gestational period. The offspring rats were euthanized on the 90th postnatal day. Hypothalamus, pituitary, thyroid, and liver were collected to analyze gene expression and protein content through qPCR and Western Blot. Blood was collected to determine TSH and thyroid hormone levels through fluorometric or chemiluminescence immunoassays. Results: In the adult F1 female rats, the highest dose of DEHP decreased TSH serum levels. In the thyroid, DEHP reduced the gene expression and/or protein content of NIS, TSHR, TG, TPO, MCT8, NKX2.1, PAX8, and FOXE1. These data are consistent with the reduction in T4 serum levels of the F1 DEHP-exposed female rats. In the liver, DEHP exposure increased the mRNA expression of Dio1 and Ttr, while the highest dose of DEHP reduced the mRNA expression of Ugt1a1 and Ugt1a6. Conversely, in the F1 male adult rats, TSHB expression and TSH serum levels were increased in DEHP-exposed animals. In the thyroid, except for the reduced protein content of TSHR, none of the evaluated genes/proteins were altered by DEHP. TH serum levels were not changed in the DEHP-exposed F1 male rats compared to the control group. Additionally, there were no significant alterations in the expression of hepatic enzymes in these animals. Discussion/Conclusions: Our results demonstrated, for the first time, that intrauterine exposure to DEHP disrupts the HPT axis function in male and female offspring rats and strongly suggest that DEHP exposure increases the susceptibility of the offspring animals to develop thyroid dysfunctions during adulthood.


Asunto(s)
Dietilhexil Ftalato , Disruptores Endocrinos , Hipotálamo , Hipófisis , Efectos Tardíos de la Exposición Prenatal , Glándula Tiroides , Animales , Femenino , Masculino , Embarazo , Ratas , Aceite de Maíz , Dietilhexil Ftalato/toxicidad , Disruptores Endocrinos/toxicidad , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratas Wistar , ARN Mensajero/metabolismo , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Tirotropina , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo
2.
J Cell Biochem ; 121(11): 4558-4568, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32056265

RESUMEN

Cancer-bearing often exhibits hypoinsulinemia, insulin (INS) resistance and glutamine depletion associated with cachexia. However, INS and glutamine effects on cachexia metabolic abnormalities, particularly on tumor-affected proteins related to INS resistance, are poorly known. The main purpose of this study was to investigate the effects of INS and glutamine dipeptide (GDP) treatments on phospho-protein kinase B (p-Akt), and phospho-hormone sensitive lipase (p-HSL) in Walker-256 tumor-bearing rats. INS (NPH, 40 UI/kg, subcutaneous), GDP (1.5 g/kg, oral), INS+GDP or vehicle (control rats) were administered for 13 days, once a day, starting at the day of inoculation of tumor cells. The experiments were performed 4 hours after the last treatment to evaluate acute effects of INS and GDP, besides the chronic effects. INS and/or INS+GDP treatments, which markedly increased the insulinemia, increased the p-Akt: total Akt ratio and prevented the increased p-HSLSer552 : total HSL ratio in the retroperitoneal fat of tumor-bearing rats, without changing the INS resistance and increased expression of factor tumor necrosis-α (TNF-α) in this tissue. INS and INS+GDP also increased the p-Akt: total Akt ratio, whereas GDP and INS+GDP increased the GLUT4 glucose transporter gene expression, in the gastrocnemius muscle of the tumor-bearing rats. Accordingly, treatments with INS and INS+GDP markedly reduced glycemia, increased retroperitoneal fat and attenuated the body mass loss of tumor-bearing rats. In conclusion, hyperinsulinemia induced by high-dose INS treatments increased Akt phosphorylation and prevented increased p-HSLSer552 : total HSL ratio, overlapping INS resistance. These effects are consistent with increased fat mass gain and weight loss (cachexia) attenuation of tumor-bearing rats, evidencing that Akt activation is a potential strategy to prevent loss of fat mass in cancer cachexia.


Asunto(s)
Caquexia/tratamiento farmacológico , Carcinoma 256 de Walker/complicaciones , Glutamina/farmacología , Hipoglucemiantes/farmacología , Insulina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Glucemia/análisis , Caquexia/etiología , Caquexia/metabolismo , Caquexia/patología , Carcinoma 256 de Walker/patología , Quimioterapia Combinada , Resistencia a la Insulina , Masculino , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ratas Wistar
3.
Environ Toxicol ; 33(2): 209-219, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29139221

RESUMEN

Perchlorate is a widespread endocrine disruptor that was previously correlated with increased serum TSH levels and decreased thyroid hormones production both in animals and humans. Even so, the regulation of gene/protein expression in the hypothalamus, pituitary and thyroid by chronic perchlorate exposure was not completely elucidated. Therefore, this study aimed to investigate the underlying mechanisms involved in the disruption of hypothalamus-pituitary-thyroid axis by chronic perchlorate exposure. Male Wistar rats were treated or not with NaClO4 in the drinking water (35 mg/Kg/day) for 60 days. Thereafter, hormone/cytokines serum levels were measured through multiplex assays; genes/proteins expression were investigated by qPCR/Western Blotting and thyroid morphology was evaluated through histological analysis. Serum TSH levels were increased and serum T4 /T3 levels were decreased in perchlorate-treated animals. This treatment also altered the thyrotropin-releasing hormone mRNA/protein content in the hypothalamus. Additionally, the expression of both subunits of TSH were increased in the pituitary of perchlorate-treated rats, which also presented significant alterations in the thyroid morphology/gene expression. Furthermore, perchlorate exposure reduced liver Dio1 mRNA expression and increased the content of pro-inflammatory cytokines in the thyroid and the serum. In conclusion, our study adds novel findings about the perchlorate-induced disruption of the hypothalamus-pituitary-thyroid axis gene/protein expression in male rats. The data presented herein also suggest that perchlorate induces thyroid and systemic inflammation through the increased production of cytokines. Taken together, our results suggest that perchlorate contamination should be monitored, especially in the individuals most susceptible to the deleterious effects of reduced levels of thyroid hormones.


Asunto(s)
Disruptores Endocrinos/toxicidad , Hipotálamo/efectos de los fármacos , Percloratos/toxicidad , Hipófisis/efectos de los fármacos , Compuestos de Sodio/toxicidad , Glándula Tiroides/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Factor de Transcripción PAX8/metabolismo , Hipófisis/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Hormonas Tiroideas/sangre , Factor Nuclear Tiroideo 1/metabolismo , Hormona Liberadora de Tirotropina/genética , Hormona Liberadora de Tirotropina/metabolismo , Tiroxina/sangre , Triyodotironina/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA