Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life Sci Alliance ; 6(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37793777

RESUMEN

Myocardial mitochondria are primary sites of myocardial energy metabolism. Mitochondrial disorders are associated with various cardiac diseases. We previously showed that mice with cardiomyocyte-specific knockout of the mitochondrial translation factor p32 developed heart failure from dilated cardiomyopathy. Mitochondrial translation defects cause not only mitochondrial dysfunction but also decreased nicotinamide adenine dinucleotide (NAD+) levels, leading to impaired lysosomal acidification and autophagy. In this study, we investigated whether nicotinamide mononucleotide (NMN) administration, which compensates for decreased NAD+ levels, improves heart failure because of mitochondrial dysfunction. NMN administration reduced damaged lysosomes and improved autophagy, thereby reducing heart failure and extending the lifespan in p32cKO mice. We found that lysosomal damage due to mitochondrial dysfunction induced ferroptosis, involving the accumulation of iron in lysosomes and lipid peroxide. The ameliorative effects of NMN supplementation were found to strongly affect lysosomal function rather than mitochondrial function, particularly lysosome-mediated ferroptosis. NMN supplementation can improve lysosomal, rather than mitochondrial, function and prevent chronic heart failure.


Asunto(s)
Ferroptosis , Insuficiencia Cardíaca , Ratones , Animales , Mononucleótido de Nicotinamida/metabolismo , Mononucleótido de Nicotinamida/farmacología , NAD/metabolismo , Insuficiencia Cardíaca/prevención & control , Mitocondrias/metabolismo
2.
eNeuro ; 10(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36894321

RESUMEN

Wallerian degeneration (WD) occurs in the early stages of numerous neurologic disorders, and clarifying WD pathology is crucial for the advancement of neurologic therapies. ATP is acknowledged as one of the key pathologic substances in WD. The ATP-related pathologic pathways that regulate WD have been defined. The elevation of ATP levels in axon contributes to delay WD and protects axons. However, ATP is necessary for the active processes to proceed WD, given that WD is stringently managed by auto-destruction programs. But little is known about the bioenergetics during WD. In this study, we made sciatic nerve transection models for GO-ATeam2 knock-in rats and mice. We presented the spatiotemporal ATP distribution in the injured axons with in vivo ATP imaging systems, and investigated the metabolic source of ATP in the distal nerve stump. A gradual decrease in ATP levels was observed before the progression of WD. In addition, the glycolytic system and monocarboxylate transporters (MCTs) were activated in Schwann cells following axotomy. Interestingly, in axons, we found the activation of glycolytic system and the inactivation of the tricarboxylic acid (TCA) cycle. Glycolytic inhibitors, 2-deoxyglucose (2-DG) and MCT inhibitors, a-cyano-4-hydroxycinnamic acid (4-CIN) decreased ATP and enhanced WD progression, whereas mitochondrial pyruvate carrier (MPC) inhibitors (MSDC-0160) did not change. Finally, ethyl pyruvate (EP) increased ATP levels and delayed WD. Together, our findings suggest that glycolytic system, both in Schwann cells and axons, is the main source of maintaining ATP levels in the distal nerve stump.


Asunto(s)
Axones , Degeneración Walleriana , Animales , Ratas , Ratones , Axotomía , Axones/metabolismo , Degeneración Walleriana/metabolismo , Nervio Ciático/metabolismo , Adenosina Trifosfato/metabolismo , Regeneración Nerviosa/fisiología
3.
Cell Commun Signal ; 17(1): 128, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619261

RESUMEN

BACKGROUND: Linoleic acid is the major fatty acid moiety of cardiolipin, which is central to the assembly of components involved in mitochondrial oxidative phosphorylation (OXPHOS). Although linoleic acid is an essential nutrient, its excess intake is harmful to health. On the other hand, linoleic acid has been shown to prevent the reduction in cardiolipin content and to improve mitochondrial function in aged rats with spontaneous hypertensive heart failure (HF). In this study, we found that lower dietary intake of linoleic acid in HF patients statistically correlates with greater severity of HF, and we investigated the mechanisms therein involved. METHODS: HF patients, who were classified as New York Heart Association (NYHA) functional class I (n = 45), II (n = 93), and III (n = 15), were analyzed regarding their dietary intakes of different fatty acids during the one month prior to the study. Then, using a mouse model of HF, we confirmed reduced cardiolipin levels in their cardiac myocytes, and then analyzed the mechanisms by which dietary supplementation of linoleic acid improves cardiac malfunction of mitochondria. RESULTS: The dietary intake of linoleic acid was significantly lower in NYHA III patients, as compared to NYHA II patients. In HF model mice, both CI-based and CII-based OXPHOS activities were affected together with reduced cardiolipin levels. Silencing of CRLS1, which encodes cardiolipin synthetase, in cultured cardiomyocytes phenocopied these events. Feeding HF mice with linoleic acid improved both CI-based and CII-based respiration as well as left ventricular function, together with an increase in cardiolipin levels. However, although assembly of the respirasome (i.e., CI/CIII2/CIV complex), as well as assembly of CII subunits and the CIII2/CIV complex statistically correlated with cardiolipin levels in cultured cardiomyocytes, respirasome assembly was not notably restored by dietary linoleic acid in HF mice. Therefore, although linoleic acid may significantly improve both CI-based and CII-based respiration of cardiomyocytes, respirasomes impaired by HF were not easily repaired by the dietary intake of linoleic acid. CONCLUSIONS: Dietary supplement of linoleic acid is beneficial for improving cardiac malfunction in HF, but is unable to completely cure HF.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Insuficiencia Cardíaca/metabolismo , Ácido Linoleico/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Anciano , Animales , Cardiolipinas/metabolismo , Complejo II de Transporte de Electrones/química , Femenino , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Ácido Linoleico/metabolismo , Masculino , Ratones , Mitocondrias Cardíacas/metabolismo , Subunidades de Proteína/metabolismo
4.
J Agric Food Chem ; 63(14): 3742-51, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25837668

RESUMEN

The quality of coffee green beans is generally evaluated by the sensory cupping test, rather than by chemical compound-based criteria. In this study, we examined the relationship between metabolites and cupping scores for 36 varieties of beans, using a nontargeted LC-MS-based metabolic profiling technique. The cupping score was precisely predicted with the metabolic information measured using LC-MS. Two markers that strongly correlated with high cupping scores were determined to be isomers of 3-methylbutanoyl disaccharides (3MDs; 0.01-0.035 g/kg of beans) by spectroscopic analyses after purification, and one of them was a novel structure. Further, both the 3MDs were determined to be precursors of 3-methylbutanoic acid that enhance the quality of coffee. The applicability of 3MDs as universal quality indicators was validated with another sample set. It was concluded that 3MDs are the causative metabolites determining beverage quality and can be utilized for green bean selection and as key compounds for improving the beverage quality.


Asunto(s)
Coffea/química , Aromatizantes/química , Glicósidos/química , Semillas/química , Café/química , Humanos , Espectrometría de Masas , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA