Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Endocr Rev ; 44(2): 281-296, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36251886

RESUMEN

Accumulated preclinical literature demonstrates that hypothalamic inflammation and gliosis are underlying causal components of diet-induced obesity in rodent models. This review summarizes and synthesizes available translational data to better understand the applicability of preclinical findings to human obesity and its comorbidities. The published literature in humans includes histopathologic analyses performed postmortem and in vivo neuroimaging studies measuring indirect markers of hypothalamic tissue microstructure. Both support the presence of hypothalamic inflammation and gliosis in children and adults with obesity. Findings predominantly point to tissue changes in the region of the arcuate nucleus of the hypothalamus, although findings of altered tissue characteristics in whole hypothalamus or other hypothalamic regions also emerged. Moreover, the severity of hypothalamic inflammation and gliosis has been related to comorbid conditions, including glucose intolerance, insulin resistance, type 2 diabetes, and low testosterone levels in men, independent of elevated body adiposity. Cross-sectional findings are augmented by a small number of prospective studies suggesting that a greater degree of hypothalamic inflammation and gliosis may predict adiposity gain and worsening insulin sensitivity in susceptible individuals. In conclusion, existing human studies corroborate a large preclinical literature demonstrating that hypothalamic neuroinflammatory responses play a role in obesity pathogenesis. Extensive or permanent hypothalamic tissue remodeling may negatively affect the function of neuroendocrine regulatory circuits and promote the development and maintenance of elevated body weight in obesity and/or comorbid endocrine disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Masculino , Adulto , Niño , Humanos , Gliosis/etiología , Gliosis/patología , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Estudios Prospectivos , Hipotálamo , Obesidad/complicaciones , Inflamación
2.
Obesity (Silver Spring) ; 29(11): 1770-1779, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34734493

RESUMEN

OBJECTIVE: This study investigated, in a large pediatric population, whether magnetic resonance imaging (MRI) evidence of mediobasal hypothalamic (MBH) gliosis is associated with baseline or change over 1 year in body adiposity. METHODS: Cross-sectional and prospective cohort analyses were conducted within the Adolescent Brain Cognitive Development Study. Study 1 included 169 children with usable baseline T2-weighted MRI images and anthropometrics from baseline and 1-year follow-up study visits. Signal ratios compared T2 signal intensity in MBH and two reference regions (amygdala [AMY] and putamen) as a measure of MBH gliosis. Study 2 included a distinct group of 238 children with overweight or obesity to confirm initial findings in an independent sample. RESULTS: In Study 1, MBH/AMY signal ratio was positively associated with BMI z score (ß = 4.27, p < 0.001). A significant interaction for the association of MBH/AMY signal ratio with change in BMI z score suggested that relationships differed by baseline weight status. Study 2 found that higher MBH/AMY signal ratios associated with an increase in BMI z score for children with overweight (ß = 0.58, p = 0.01), but not those with obesity (ß = 0.02, p = 0.91). CONCLUSIONS: Greater evidence of hypothalamic gliosis by MRI is associated with baseline BMI z score and predicts adiposity gain in young children at risk of obesity.


Asunto(s)
Adiposidad , Obesidad Infantil , Adolescente , Índice de Masa Corporal , Niño , Preescolar , Estudios Transversales , Estudios de Seguimiento , Gliosis/diagnóstico por imagen , Humanos , Hipotálamo/diagnóstico por imagen , Obesidad/complicaciones , Obesidad/diagnóstico por imagen , Obesidad Infantil/diagnóstico por imagen , Estudios Prospectivos
3.
Pediatr Obes ; 16(4): e12732, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33084253

RESUMEN

OBJECTIVE: Quantitative magnetic resonance imaging (MRI) evidence of mediobasal hypothalamic (MBH) gliosis positively correlates with body mass index (BMI) in adults. This has neither been well explored in children nor have other brain regions involved in appetitive processing been tested for evidence of gliosis. METHODS: Multi-site cross-sectional study in children to test for differences in quantitative T2 signal (measure of gliosis) by region and to assess relationships with age and BMI. Participants underwent brain MRI using the same equipment and protocol to quantify T2 relaxation time in six bilateral regions of interest (ROIs): putamen, caudate, ventral striatum, amygdala, hippocampus and MBH, and three control regions: white matter, motor cortex and dorsal hypothalamus. RESULTS: Thirty-one participants (61% female) were included in a combined sample from the University of Washington (N = 9) and John Hopkins University (N = 22). Mean age was 14 ± 3 years, and BMI z-score was 0.7 ± 1.1 (26% with obesity). No study site-related differences were seen in T2 relaxation time across all nine regions (chi2 (8): 9.46, P = .30). Regional differences in T2 relaxation time were present (P < .001). MBH presented longer T2 relaxation time, suggestive of gliosis, when compared to all regions (P < .001), including an intra-hypothalamic control. Physiological age-related declines in T2 relaxation times were found in grey matter ROIs, but not in the MBH (r = -0.14, P = .46). MBH was the only region with a positive correlation between T2 relaxation time and BMI z-score (r = 0.38, P = .03). CONCLUSIONS: In a multi-site study, pilot data suggest that quantitative MRI detected normal maturation-related brain variation as well as evidence that MBH gliosis is associated with increased adiposity in children.


Asunto(s)
Gliosis , Hipotálamo , Adulto , Encéfalo , Niño , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los Resultados
4.
Int J Obes (Lond) ; 44(1): 167-177, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30967608

RESUMEN

BACKGROUND/OBJECTIVES: The salience network (SN) comprises brain regions that evaluate cues in the external environment in light of internal signals. We examined the SN response to meal intake and potential genetic and acquired influences on SN function. SUBJECTS/METHODS: Monozygotic (MZ; 40 pairs) and dizygotic (15 pairs) twins had body composition and plasma metabolic profile evaluated (glucose, insulin, leptin, ghrelin, and GLP-1). Twins underwent resting-state functional magnetic resonance imaging (fMRI) scans before and after a standardized meal. The strength of SN connectivity was analyzed pre- and post-meal and the percentage change elicited by a meal was calculated. A multi-echo T2 MRI scan measured T2 relaxation time, a radiologic index of gliosis, in the mediobasal hypothalamus (MBH) and control regions. Statistical approaches included intraclass correlations (ICC) to investigate genetic influences and within-pair analyses to exclude genetic confounders. RESULTS: SN connectivity was reduced by a meal ingestion (ß = -0.20; P < 0.001). Inherited influences on both pre- and post-meal connectivity were present (ICC MZ twins 26%, P < 0.05 and 47%, P < 0.001, respectively), but not percentage change in response to the meal. SN connectivity in response to a meal did not differ between participants with obesity and of normal weight (χ2(1) = 0.93; P = 0.33). However, when participants were classified as having high or low signs of MBH gliosis, the high MBH gliosis group failed to reduce the connectivity in response to a meal (z = -1.32; P = 0.19). Excluding genetic confounders, the percentage change in SN connectivity by a meal correlated to body fat percentage (r = 0.24; P < 0.01). CONCLUSIONS: SN connectivity was reduced by a meal, indicating potential participation of the SN in control of feeding. The strength of SN connectivity is inherited, but the degree to which SN connectivity is reduced by eating appears to be influenced by adiposity and the presence of hypothalamic gliosis.


Asunto(s)
Ingestión de Alimentos , Gliosis/fisiopatología , Hipotálamo/fisiología , Comidas/fisiología , Red Nerviosa/fisiología , Adulto , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Femenino , Antecedentes Genéticos , Humanos , Masculino , Persona de Mediana Edad , Gemelos Dicigóticos/genética , Gemelos Dicigóticos/estadística & datos numéricos , Gemelos Monocigóticos/genética , Gemelos Monocigóticos/estadística & datos numéricos , Adulto Joven
5.
Pediatr Obes ; 14(2): e12486, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30537237

RESUMEN

OBJECTIVE: In adults, hypothalamic gliosis has been documented using quantitative T2 neuroimaging, whereas functional magnetic resonance imaging (fMRI) has shown a defective hypothalamic response to nutrients. No studies have yet evaluated these hypothalamic abnormalities in children with obesity. METHODS: Children with obesity and lean controls underwent quantitative MRI measuring T2 relaxation time, along with continuous hypothalamic fMRI acquisition to evaluate early response to glucose ingestion. RESULTS: Children with obesity (N = 11) had longer T2 relaxation times, consistent with gliosis, in the mediobasal hypothalamus (MBH) compared to controls (N = 9; P = 0.004). Moreover, there was a highly significant group*region interaction (P = 0.002), demonstrating that signs of gliosis were specific to MBH and not to reference regions. Longer T2 relaxation times correlated with measures of higher adiposity, including visceral fat percentage (P = 0.01). Mean glucose-induced hypothalamic blood oxygen-level dependent signal change did not differ between groups (P = 0.11). However, mean left MBH T2 relaxation time negatively correlated with glucose-induced hypothalamic signal change (P < 0.05). CONCLUSION: Imaging signs of hypothalamic gliosis were present in children with obesity and positively associated with more severe adiposity. Children with the strongest evidence for gliosis showed the least activation after glucose ingestion. These initial findings suggest that the hypothalamus is both structurally and functionally affected in childhood obesity.


Asunto(s)
Gliosis/diagnóstico por imagen , Hipotálamo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Obesidad Infantil/patología , Adolescente , Niño , Ingestión de Alimentos , Femenino , Glucosa/fisiología , Humanos , Hipotálamo/patología , Hipotálamo/fisiopatología , Masculino , Oxígeno/sangre , Obesidad Infantil/diagnóstico por imagen , Obesidad Infantil/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA