Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 11(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35009140

RESUMEN

The potential value of DNA barcoding for the identification of medicinal plants and authentication of traded plant materials has been widely recognized; however, a number of challenges remain before DNA methods are fully accepted as an essential quality control method by industry and regulatory authorities. The successes and limitations of conventional DNA barcoding are considered in relation to important members of the Lamiaceae. The mint family (Lamiaceae) contains over one thousand species recorded as having a medicinal use, with many more exploited in food and cosmetics for their aromatic properties. The family is characterized by a diversity of secondary products, most notably the essential oils (EOs) produced in external glandular structures on the aerial parts of the plant that typify well-known plants of the basil (Ocimum), lavender (Lavandula), mint (Mentha), thyme (Thymus), sage (Salvia) and related genera. This complex, species-rich family includes widely cultivated commercial hybrids and endangered wild-harvested traditional medicines, and examples of potential toxic adulterants within the family are explored in detail. The opportunities provided by next generation sequencing technologies to whole plastome barcoding and nuclear genome sequencing are also discussed with relevant examples.

2.
Genes (Basel) ; 10(4)2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970623

RESUMEN

There is considerable potential for the use of DNA barcoding methods to authenticate raw medicinal plant materials, but their application to testing commercial products has been controversial. A simple PCR test targeting species-specific sequences within the nuclear ribosomal internal transcribed spacer (ITS) region was adapted to screen commercial products for the presence of Hypericum perforatum L. material. DNA differing widely in amount and extent of fragmentation was detected in a number of product types. Two assays were designed to further analyse this DNA using a curated database of selected Hypericum ITS sequences: A qPCR assay based on a species-specific primer pair spanning the ITS1 and ITS2 regions, using synthetic DNA reference standards for DNA quantitation and a Next Generation Sequencing (NGS) assay separately targeting the ITS1 and ITS2 regions. The ability of the assays to detect H. perforatum DNA sequences in processed medicines was investigated. Out of twenty different matrices tested, both assays detected H. perforatum DNA in five samples with more than 10³ ITS copies µL-1 DNA extract, whilst the qPCR assay was also able to detect lower levels of DNA in two further samples. The NGS assay confirmed that H. perforatum was the major species in all five positive samples, though trace contaminants were also detected.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN Espaciador Ribosómico/genética , Hypericum/genética , Plantas Medicinales/genética , ADN/genética , ADN de Plantas/genética , Hypericum/clasificación , Extractos Vegetales/clasificación , Extractos Vegetales/genética , Plantas Medicinales/clasificación
3.
Front Plant Sci ; 9: 1828, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619401

RESUMEN

Herbal medicines are used globally for their health benefits as an alternative therapy method to modern medicines. The market for herbal products has increased rapidly over the last few decades, but this has in turn increased the opportunities for malpractices such as contamination or substitution of products with alternative plant species. In the 1990s, a series of severe renal disease cases were reported in Belgium associated with weight loss treatment, in which the active species Stephania tetrandra was found to be substituted with Aristolochia fangchi. A. fangchi contains toxic aristolochic acids, which have been linked to kidney failure, as well as cancers of the urinary tract. Because of these known toxicities, herbal medicines containing these compounds, or potentially contaminated by these plants, have been restricted or banned in some countries, but they are still available via the internet and in alternate formulations. In this study, a DNA based method based on quantitative real-time PCR (qPCR) was tested to detect and distinguish Aristolochia subg. Siphisia (Duch.) O.C.Schmidt species from a range of medicinal plants that could potentially be contaminated with Aristolochia material. Specific primers were designed to confirm that Aristolochia subg. Siphisia can be detected, even in small amounts, if it is present in the products, fulfilling the aim of offering a simple, cheaper and faster solution than the chemical methods. A synthetic gBlock template containing the primer sequences was used as a reference standard to calibrate the qPCR assay and to estimate the copy number of a target gene per sample. Generic primers covering the conserved 5.8S rRNA coding region were used as internal control to verify DNA quality and also as a reference gene for relative quantitation. To cope with potentially degraded DNA, all qPCR primer sets were designed to generate PCR products of under 100 bp allowing detection and quantification of A. fangchi gBlock even when mixed with S. tetrandra gBlock in different ratios. All proportions of Aristolochia, from 100 to 2%, were detected. Using standards, associating the copy number to each start quantity, the detection limit was calculated and set to about 50 copies.

4.
Plants (Basel) ; 6(4)2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-29072582

RESUMEN

Liriope and Ophiopogon species have a long history of use as traditional medicines across East Asia. They have also become widely used around the world for ornamental and landscaping purposes. The morphological similarities between Liriope and Ophiopogon taxa have made the taxonomy of the two genera problematic and caused confusion about the identification of individual specimens. Molecular approaches could be a useful tool for the discrimination of these two genera in combination with traditional methods. Seventy-five Liriope and Ophiopogon samples from the UK National Plant Collections of Ophiopogon and Liriope were analyzed. The 5' end of the DNA barcode region of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcLa) was used for the discrimination of the two genera. A single nucleotide polymorphism (SNP) between the two genera allowed the development of discriminatory tests for genus-level identification based on specific PCR and high-resolution melt curve (HRM) assays. The study highlights the advantage of incorporating DNA barcoding methods into plant identification protocols and provides simple assays that could be used for the quality assurance of commercially traded plants and herbal drugs.

6.
Planta Med ; 83(14-15): 1117-1129, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28662530

RESUMEN

DNA barcoding methods originally developed for the identification of plant specimens have been applied to the authentication of herbal drug materials for industrial quality assurance. These methods are intended to be complementary to current morphological and chemical methods of identification. The adoption of these methods by industry will be accelerated by the introduction of DNA-based identification techniques into regulatory standards and monographs. The introduction of DNA methods into the British Pharmacopoeia is described, along with a reference standard for use as a positive control for DNA extraction and polymerase chain reaction (PCR). A general troubleshooting chart is provided to guide the user through the problems that may be encountered during this process. Nevertheless, the nature of the plant materials and the demands of industrial quality control procedures mean that conventional DNA barcoding is not the method of choice for industrial quality control. The design of DNA barcode-targeted quantitative PCR and high resolution melt curve tests is one strategy for developing rapid, robust, and reliable protocols for high-throughput screening of raw materials. The development of authentication tests for wild-harvested Rhodiola rosea L. is used as a case study to exemplify these relatively simple tests. By way of contrast, the application of next-generation sequencing to create a complete profile of all the biological entities in a mixed herbal drug is described and its potential for industrial quality assurance discussed.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Medicina de Hierbas/normas , Plantas Medicinales/clasificación , Biología Computacional , Unión Europea , Secuenciación de Nucleótidos de Alto Rendimiento , Control de Calidad , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA