Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Biotechnol J ; 15(9): 1120-1129, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28160363

RESUMEN

Plant-produced glycoproteins contain N-linked glycans with plant-specific residues of ß(1,2)-xylose and core α(1,3)-fucose, which do not exist in mammalian-derived proteins. Although our experience with two enzymes that are used for enzyme replacement therapy does not indicate that the plant sugar residues have deleterious effects, we made a conscious decision to eliminate these moieties from plant-expressed proteins. We knocked out the ß(1,2)-xylosyltranferase (XylT) and the α(1,3)-fucosyltransferase (FucT) genes, using CRISPR/Cas9 genome editing, in Nicotiana tabacum L. cv Bright Yellow 2 (BY2) cell suspension. In total, we knocked out 14 loci. The knocked-out lines were stable, viable and exhibited a typical BY2 growing rate. Glycan analysis of the endogenous proteins of these lines exhibited N-linked glycans lacking ß(1,2)-xylose and/or α(1,3)-fucose. The knocked-out lines were further transformed successfully with recombinant DNaseI. The expression level and the activity of the recombinant protein were similar to that of the protein produced in the wild-type BY2 cells. The recombinant DNaseI was shown to be totally free from any xylose and/or fucose residues. The glyco-engineered BY2 lines provide a valuable platform for producing potent biopharmaceutical products. Furthermore, these results demonstrate the power of the CRISPR/Cas9 technology for multiplex gene editing in BY2 cells.


Asunto(s)
Terapia Biológica , Fucosa/metabolismo , Glicoproteínas/metabolismo , Nicotiana/genética , Xilosa/metabolismo , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Edición Génica , Vectores Genéticos , Glicoproteínas/genética , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polisacáridos , Proteínas Recombinantes , Nicotiana/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
2.
Mol Genet Metab ; 112(1): 1-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24630271

RESUMEN

Gaucher disease (GD) is a rare, genetic lysosomal storage disorder caused by functional defects of acid ß-glucosidase that results in multiple organ dysfunction. Glycosylation of recombinant acid human ß-glucosidase and exposure of terminal mannose residues are critical to the success of enzyme replacement therapy (ERT) for the treatment of visceral and hematologic manifestations in GD. Three commercially available ERT products for treatment of GD type 1 (GD1) include imiglucerase, velaglucerase alfa, and taliglucerase alfa. Imiglucerase and velaglucerase alfa are produced in different mammalian cell systems and require production glycosylation modifications to expose terminal α-mannose residues, which are needed for mannose receptor-mediated uptake by target macrophages. Such modifications add to production costs. Taliglucerase alfa is a plant cell-expressed acid ß-glucosidase approved in the United States and other countries for ERT in adults with GD1. A plant-based expression system, using carrot root cell cultures, was developed for production of taliglucerase alfa and does not require additional processing for postproduction glycosidic modifications. Clinical trials have demonstrated that taliglucerase alfa is efficacious, with a well-established safety profile in adult, ERT-naïve patients with symptomatic GD1, and for such patients previously treated with imiglucerase. These included significant improvements in organomegaly and hematologic parameters as early as 6months, and maintenance of achieved therapeutic values in previously treated patients. Ongoing clinical trials will further characterize the long-term efficacy and safety of taliglucerase alfa in more diverse patient populations, and may help to guide clinical decisions for achieving optimal outcomes for patients with GD1.


Asunto(s)
Daucus carota/enzimología , Enfermedad de Gaucher/tratamiento farmacológico , Glucosilceramidasa/administración & dosificación , Glucosilceramidasa/farmacocinética , Plantas/genética , Ensayos Clínicos como Asunto , Terapia de Reemplazo Enzimático/economía , Enfermedad de Gaucher/patología , Glucosilceramidasa/uso terapéutico , Humanos , Células Vegetales/metabolismo
3.
PLoS One ; 4(3): e4792, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19277123

RESUMEN

UNLABELLED: Gaucher disease is a progressive lysosomal storage disorder caused by the deficiency of glucocerebrosidase leading to the dysfunction in multiple organ systems. Intravenous enzyme replacement is the accepted standard of treatment. In the current report, we evaluate the safety and pharmacokinetics of a novel human recombinant glucocerebrosidase enzyme expressed in transformed plant cells (prGCD), administered to primates and human subjects. Short term (28 days) and long term (9 months) repeated injections with a standard dose of 60 Units/kg and a high dose of 300 Units/kg were administered to monkeys (n = 4/sex/dose). Neither clinical drug-related adverse effects nor neutralizing antibodies were detected in the animals. In a phase I clinical trial, six healthy volunteers were treated by intravenous infusions with escalating single doses of prGCD. Doses of up to 60 Units/kg were administered at weekly intervals. prGCD infusions were very well tolerated. Anti-prGCD antibodies were not detected. The pharmacokinetic profile of the prGCD revealed a prolonged half-life compared to imiglucerase, the commercial enzyme that is manufactured in a costly mammalian cell system. These studies demonstrate the safety and lack of immunogenicity of prGCD. Following these encouraging results, a pivotal phase III clinical trial for prGCD was FDA approved and is currently ongoing. TRIAL REGISTRATION: ClinicalTrials.gov NCT00258778.


Asunto(s)
Enfermedad de Gaucher/tratamiento farmacológico , Glucosilceramidasa/uso terapéutico , Adulto , Animales , Formación de Anticuerpos , Células Cultivadas/enzimología , Ensayos Clínicos Fase III como Asunto , Daucus carota/citología , Evaluación Preclínica de Medicamentos , Femenino , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/genética , Glucosilceramidasa/efectos adversos , Glucosilceramidasa/economía , Glucosilceramidasa/genética , Glucosilceramidasa/inmunología , Glucosilceramidasa/aislamiento & purificación , Glucosilceramidasa/farmacocinética , Semivida , Humanos , Infusiones Intravenosas , Macaca fascicularis , Masculino , Pruebas de Neutralización , Proteínas Recombinantes de Fusión/efectos adversos , Proteínas Recombinantes de Fusión/economía , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/uso terapéutico , Transfección , Adulto Joven
4.
Plant Biotechnol J ; 5(5): 579-90, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17524049

RESUMEN

Gaucher's disease, a lysosomal storage disorder caused by mutations in the gene encoding glucocerebrosidase (GCD), is currently treated by enzyme replacement therapy using recombinant GCD (Cerezyme) expressed in Chinese hamster ovary (CHO) cells. As complex glycans in mammalian cells do not terminate in mannose residues, which are essential for the biological uptake of GCD via macrophage mannose receptors in human patients with Gaucher's disease, an in vitro glycan modification is required in order to expose the mannose residues on the glycans of Cerezyme. In this report, the production of a recombinant human GCD in a carrot cell suspension culture is described. The recombinant plant-derived GCD (prGCD) is targeted to the storage vacuoles, using a plant-specific C-terminal sorting signal. Notably, the recombinant human GCD expressed in the carrot cells naturally contains terminal mannose residues on its complex glycans, apparently as a result of the activity of a special vacuolar enzyme that modifies complex glycans. Hence, the plant-produced recombinant human GCD does not require exposure of mannose residues in vitro, which is a requirement for the production of Cerezyme. prGCD also displays a level of biological activity similar to that of Cerezyme produced in CHO cells, as well as a highly homologous high-resolution three-dimensional structure, determined by X-ray crystallography. A single-dose toxicity study with prGCD in mice demonstrated the absence of treatment-related adverse reactions or clinical findings, indicating the potential safety of prGCD. prGCD is currently undergoing clinical studies, and may offer a new and alternative therapeutic option for Gaucher's disease.


Asunto(s)
Enfermedad de Gaucher/tratamiento farmacológico , Glucosilceramidasa/metabolismo , Glucosilceramidasa/uso terapéutico , Polisacáridos/metabolismo , Animales , Western Blotting , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Cristalografía por Rayos X , Daucus carota/citología , Daucus carota/enzimología , Daucus carota/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Femenino , Enfermedad de Gaucher/enzimología , Enfermedad de Gaucher/genética , Glucosilceramidasa/genética , Humanos , Macrófagos/metabolismo , Masculino , Manosa/química , Manosa/metabolismo , Ratones , Ratones Endogámicos ICR , Polisacáridos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA