Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 38(1): 321-330, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37874168

RESUMEN

Astaxanthin (ASX) is a natural carotenoid compound found in several of microorganisms and seafood. It may have numerous therapeutic benefits for polycystic ovarian syndrome (PCOS) patients. The aim of this study was to investigate the effect of ASX on lipid profile, insulin resistance (IR), blood pressure (BP), and oxidative stress (OS) levels in infertile PCOS patients. Overall, 58 infertile women with diagnosed PCOS participated in this triple-blind randomized clinical trial. They were randomly assigned to two groups, taking either a placebo or ASX (2 × 6 mg/day) for 8 weeks. Blood serum samples were collected from patients before and after the intervention. Fasting Insulin (FI), fasting blood glucose (FBS), OS markers (malondialdehyde [MDA], superoxide dismutase [SOD], and total antioxidant capacity [TAC]), and lipid profiles were evaluated in serum. Moreover, based on the relevant formula, several indices associated with IR were calculated. BP was also assessed at the start and end of the study. After 8 weeks of ASX consumption, a significant reduction was observed in fasting blood sugar, HOMA-IR, FI, MDA, low-density lipoprotein-cholesterol, and TC/HDL-C. Conversely, ASX significantly increased TAC, HDL-C, and QUICKI. After adjusting the analysis for the baseline values of age, body mass index, and biochemical parameters, non-significant values were obtained for QUICKI and FI, along with no changes in other findings. Overall, ASX appears to be an effective and safe supplement that alleviates insulin metabolism, lipid profile parameters, and OS in infertile PCOS patients.


Asunto(s)
Infertilidad Femenina , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Femenino , Humanos , Resistencia a la Insulina/fisiología , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Presión Sanguínea , Insulina , Suplementos Dietéticos , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , LDL-Colesterol , Glucemia/metabolismo , Xantófilas
2.
Syst Biol Reprod Med ; 63(3): 150-161, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28345956

RESUMEN

Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder of women of reproductive age characterized by polycystic ovarian morphology, anovulation or oligomenorrhea, and hyperandrogenism. It is shown that disruption in the steroidogenesis pathway caused by excess androgen in PCOS is a critical element of abnormal folliculogenesis and failure in dominant follicle selection. Vitamin D plays an important role in the regulation of ovulatory dysfunction and can influence genes involved in steroidogenesis in granulosa cells. In the present study, we investigated the effects of vitamin D3 on steroidogenic enzyme expression and activities in granulosa cell using a PCOS mouse model. In our study, the PCOS mouse model was developed by the injection of dehydroepiandrosterone (DHEA) for 20 days. The mRNA and protein expression levels of genes involved in steroidogenesis in granulosa cells were compared between polycystic and normal ovaries using real-time PCR and Western blotting assays. Granulosa cells of DHEA-induced PCOS mice were then cultured with and without vitamin D3 and mRNA and protein expression levels of steroidogenic enzymes and serum 17beta-estradiol and progesterone levels were investigated using qRT-PCR, western blot, and radioimmunoassay, respectively. Steroidogenic enzymes including Cyp11a1, StAR, Cyp19a1, and 3ß-HSD were upregulated in granulosa cells of PCOS mice when compared to normal mice. Treatment with vitamin D3 decreased mRNA and protein expression levels of steroidogenic enzymes in cultured granulosa cells. Vitamin D3 also decreased aromatase and 3ß-HSD activity that leads to decreased 17beta-estradiol and progesterone release. This study suggests that vitamin D3 could modulate the steroidogenesis pathway in granulosa cells of PCOS mice that may lead to improving follicular development and maturation. This is a step towards a possible conceivable treatment for PCOS. ABBREVIATIONS: AMHR-II: anti-müllerian hormone receptor-II; 3ß-HSD: 3ß-hydroxysteroid dehydrogenase; Cyp11a1: Cytochrome P450 Family 11 Subfamily A Member 1; Cyp19a1: cytochrome P450 aromatase; DHEA: dehydroepiandrosterone; FSH: follicle stimulating hormone; FSHR: follicle stimulating hormone receptor; IVF: in vitro fertilization; 25OHD: 25-hydroxy vitamin D; OHSS: ovarian hyperstimulation syndrome; PCOS: polycystic ovarian syndrome; P450scc: P450 side-chain cleavage enzyme; StAR: steroidogenic acute regulatory protein; VDRs: vitamin D receptors.


Asunto(s)
Colecalciferol/uso terapéutico , Hormonas Esteroides Gonadales/biosíntesis , Células de la Granulosa/efectos de los fármacos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Animales , Colecalciferol/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Ciclo Estral , Femenino , Hormonas Esteroides Gonadales/sangre , Células de la Granulosa/enzimología , Ratones Endogámicos BALB C , Ovario/patología , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA