Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 23(1): 355, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980505

RESUMEN

BACKGROUND: Endophytic fungi are very rich sources of natural antibacterial and antifungal compounds. The main aim of this study is to isolate the fungal endophytes from the medicinal plant Corchorus olitorius seeds (F. Malvaceae), followed by antimicrobial screening against various bacterial and fungal strains. RESULTS: Seven endophytic fungal strains belonging to different three genera were isolated, including Penicillium, Fusarium, and Aspergillus. The seven isolated endophytic strains revealed selective noticeable activity against Escherichia coli (ATCC25922) with varied IC50s ranging from 1.19 to 10 µg /mL, in which Aspergillus sp. (Ar 6) exhibited the strongest potency against E. coli (ATCC 25,922) and candida albicans (ATCC 10,231) with IC50s 1.19 and 15 µg /mL, respectively. Therefore, the chemical profiling of Aspergillus sp. (Ar 6) crude extract was performed using LC-HR-ESI-MS and led to the dereplication of sixteen compounds of various classes (1-16). In-silico analysis of the dereplicated metabolites led to highlighting the compounds responsible for the antimicrobial activity of Aspergillus sp. extract. Moreover, molecular docking showed the potential targets of the metabolites; Astellatol (5), Aspergillipeptide A (10), and Emericellamide C (14) against E. coli and C. albicans. CONCLUSION: These results will expand the knowledge of endophytes and provide us with new approaches to face the global antibiotic resistance problem and the future production of undiscovered compounds different from the antibiotics classes.


Asunto(s)
Antiinfecciosos , Corchorus , Corchorus/microbiología , Simulación del Acoplamiento Molecular , Escherichia coli , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Hongos , Antibacterianos/metabolismo , Aspergillus , Semillas/microbiología
2.
Sci Rep ; 13(1): 20612, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996449

RESUMEN

Cancer is the world's second-leading cause of death. Drug development efforts frequently focus on medicinal plants since they are a valuable source of anticancer medications. A phytochemical investigation of the edible Ziziphus spina-christi (F. Rhamnaceae) leaf extract afforded two new dammarane type saponins identified as christinin E and F (1, 2), along with the known compound christinin A (3). Different cancer cell lines, such as lung cancer (A549), glioblastoma (U87), breast cancer (MDA-MB-231), and colorectal carcinoma (CT-26) cell lines, were used to investigate the extracted compounds' cytotoxic properties. Our findings showed significant effects on all the tested cell lines at varying concentrations (1, 5, 10, and 20 µg/mL). The three compounds exhibited potent activity at low concentrations (< 10 µg/mL), as evidenced by their low IC50 values. To further investigate the complex relationships between these identified cancer-relevant biological targets and to identify critical targets in the pathogenesis of the disease, we turned to network pharmacology and in silico-based investigations. Following this, in silico-based analysis (e.g., inverse docking, ΔG calculation, and molecular dynamics simulation) was performed on the structures of the isolated compounds to identify additional potential targets for these compounds and their likely interactions with various signalling pathways relevant to this disease. Based on our findings, Z. spina-christi's compounds showed promise as potential anti-cancer therapeutic leads in the future.


Asunto(s)
Antineoplásicos , Saponinas , Ziziphus , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ziziphus/química , Saponinas/farmacología , Damaranos
3.
Nat Prod Res ; 37(23): 4063-4068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36657413

RESUMEN

Endophytic fungi are known to be a rich source of anti-infective drugs. In our study, Allium cepa was investigated for fungal diversity using different media to give 11 isolates which were identified morphologically. Out of the isolated fungal strains, Penicillium sp. (LCEF10) revealed potential anti-infective activity against the tested microbes (Fusarium solani ATTC 25922, Pseudomonas aeruginosa (ATTC 29231), Staphylococcus aureus ATTC 27853, Candida albicans ATTC 10231), besides, their MICs were measured by well diffusion method, therefore, it was subjected to molecular identification in addition to phylogenetic analysis. Moreover, the ITS sequence of strain LCEF10 showed a consistent assignment with the highest sequence similarity (99.81%) to Penicillium oxalicum NRRL 787. The crude ethyl acetate extract of Penicillium sp. LCEF10 was investigated for metabolomic analysis using LC-HR-ESI-MS. The metabolic profiling revealed the presence of polyketides, macrolides, phenolics and terpenoids. Furthermore, in silico molecular docking study was carried out to predict which compounds most likely responsible for the anti-infective activity.


Asunto(s)
Antiinfecciosos , Cebollas , Filogenia , Simulación del Acoplamiento Molecular , Antiinfecciosos/farmacología , Hongos , Candida albicans , Endófitos
4.
Molecules ; 27(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500473

RESUMEN

Bioassay-guided fractionation technique of roots of Paeonia officinalis led to isolation and structure elucidation of seven known compounds, including four monoterpene glycosides: lactiflorin (1), paeoniflorin (4), galloyl paeoniflorin (5), and (Z)-(1S,5R)-ß-pinen-10-yl ß-vicianoside (7); two phenolics: benzoic acid (2) and methyl gallate (3); and one sterol glycoside: ß-sitosterol 3-O-ß-D-glucopyranoside (6). The different fractions and the isolated compounds were evaluated for their antimicrobial and antimalarial activities. Fraction II and III showed antifungal activity against Candida neoformans with IC50 values of 28.11 and 74.37 µg/mL, respectively, compared with the standard fluconazole (IC50 = 4.68 µg/mL), and antibacterial potential against Pseudomonas aeruginosa (IC50 = 20.27 and 24.82 µg/mL, respectively) and Klebsiella pneumoniae (IC50 = 43.21 and 94.4 µg/mL, respectively), compared with the standard meropenem (IC50 = 28.67 and 43.94 µg/mL, respectively). Compounds 3 and 5 showed antimalarial activity against Plasmodium falciparum D6 with IC50 values of 1.57 and 4.72 µg/mL and P. falciparum W2 with IC50 values of 0.61 and 2.91 µg/mL, respectively, compared with the standard chloroquine (IC50 = 0.026 and 0.14 µg/mL, respectively).


Asunto(s)
Antiinfecciosos , Antimaláricos , Paeonia , Antimaláricos/química , Paeonia/química , Plasmodium falciparum , Fraccionamiento Químico , Antiinfecciosos/farmacología , Extractos Vegetales/química
5.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296628

RESUMEN

Aphthous ulcers are very common disorders among different age groups and are very noxious and painful. The incidence of aphthous ulcer recurrence is very high and it may even last for a maximum of 6 days and usually, patients cannot stand its pain. This study aims to prepare a buccoadhesive fast dissolving film containing Corchorus olitorius seed extract to treat recurrent minor aphthous ulceration (RMAU) in addition to clinical experiments on human volunteers. An excision wound model was used to assess the in vivo wound healing potential of Corchorus olitorius L. seed extract, with a focus on wound healing molecular targets such as TGF-, TNF-, and IL-1. In addition, metabolomic profiling using HR-LCMS for the crude extract of Corchorus olitorius seeds was explored. Moreover, molecular docking experiments were performed to elucidate the binding confirmation of the isolated compounds with three molecular targets (TNF-α, IL-1ß, and GSK3). Additionally, the in vitro antioxidant potential of C. olitorius seed extract using both H2O2 and superoxide radical scavenging activity was examined. Clinical experiments on human volunteers revealed the efficiency of the prepared C. olitorius seeds buccal fast dissolving film (CoBFDF) in relieving pain and wound healing of RMAU. Moreover, the wound healing results revealed that C. olitorius seed extract enhanced wound closure rates (p ≤ 0.001), elevated TGF-ß levels and significantly downregulated TNF-α and IL-1ß in comparison to the Mebo-treated group. The phenotypical results were supported by biochemical and histopathological findings, while metabolomic profiling using HR-LCMS for the crude extract of Corchorus olitorius seeds yielded a total of 21 compounds belonging to diverse chemical classes. Finally, this study highlights the potential of C. olitorius seed extract in wound repair uncovering the most probable mechanisms of action using in silico analysis.


Asunto(s)
Corchorus , Estomatitis Aftosa , Humanos , Corchorus/química , Estomatitis Aftosa/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Voluntarios Sanos , Factor de Necrosis Tumoral alfa , Superóxidos , Simulación del Acoplamiento Molecular , Glucógeno Sintasa Quinasa 3 , Peróxido de Hidrógeno , Extractos Vegetales/farmacología , Semillas , Dolor , Factor de Crecimiento Transformador beta , Interleucina-1
6.
Food Funct ; 12(22): 11303-11318, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34643201

RESUMEN

In the present study, we investigated the hypoglycemic effect of different extracts (i.e. organic and aqueous) derived from the fruits of Hyphaene thebaica (doum) on male streptozotocin-induced diabetic rats. Blood glucose levels as well as the relative gene expression of insulin, TNF-α, and TGF-ß were determined in the pancreatic tissue of the experimental animals. Treatment of STZ-induced diabetic rats with aqueous extracts of the plant fruit over 7 weeks significantly reduced the elevated blood glucose and increased the relative expression of insulin, while the relative expression of inflammatory mediators (i.e. TNF-α and TGF-ß) was significantly reduced. Histopathological investigation also revealed that the aqueous extract treatment effectively reversed the ß-cell necrosis induced by STZ and restored its normal morphology. Furthermore, liquid chromatography high resolution mass spectrometry (LC-HRMS) and in silico chemical investigation of the aqueous extract elucidated its major bioactive phytochemicals (i.e. flavonoids) and putatively determined the pancreatic KATP channel as a target for these bioactive components. In vitro insulin secretion assay revealed that myricetin, luteolin, and apigenin were able to induce insulin secretion by human pancreatic cells (insulin production = 20.9 ± 1.3, 13.74 ± 1.8, and 11.33 ± 1.1 ng mL-1, respectively). Using molecular docking and dynamics simulations, we were able to shed the light on the insulin secretagogue's mode of action through these identified bioactive compounds and to determine the main structural elements required for its bioactivity. This comprehensive investigation of this native fruit will encourage future clinical studies to recommend edible and widely available fruits like doum to be a part of DM treatment plans.


Asunto(s)
Arecaceae/química , Diabetes Mellitus Experimental/metabolismo , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Animales , Glucemia/efectos de los fármacos , Flavonoides/farmacología , Insulina/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA