Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life (Basel) ; 11(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34440569

RESUMEN

Neurodegenerative diseases (NDs) extend the global health burden. Consumption of alcohol as well as maternal exposure to ethanol can damage several neuronal functions and cause cognition and behavioral abnormalities. Ethanol induces oxidative stress that is linked to the development of NDs. Treatment options for NDs are yet scarce, and natural product-based treatments could facilitate ND management since plants possess plenty of bioactive metabolites, including flavonoids, which typically demonstrate antioxidant and anti-inflammatory properties. Hypericum oblongifolium is an important traditional medicinal plant used for hepatitis, gastric ulcer, external wounds, and other gastrointestinal disorders. However, it also possesses multiple bioactive compounds and antioxidant properties, but the evaluation of isolated pure compounds for neuroprotective efficacy has not been done yet. Therefore, in the current study, we aim to isolate and characterize the bioactive flavonoid folecitin and evaluate its neuroprotective activity against ethanol-induced oxidative-stress-mediated neurodegeneration in the hippocampus of postnatal day 7 (PND-7) rat pups. A single dose of ethanol (5 g/kg body weight) was intraperitoneally administered after the birth of rat pups on PND-7. This caused oxidative stress accompanied by the activation of phosphorylated-c-Jun N-terminal kinase (p-JNK), nod-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and cysteine-aspartic acid protease-1 (caspase-1) proteins to form a complex called the NLRP3-inflammasome, which converts pro-interleukin 1 beta (IL-1B) to activate IL-1B and induce widespread neuroinflammation and neurodegeneration. In contrast, co-administration of folecitin (30 mg/kg body weight) reduced ethanol-induced oxidative stress, inhibited p-JNK, and deactivated the NLRP3-inflammasome complex. Furthermore, folecitin administration reduced neuroinflammatory and neurodegenerative protein markers, including decreased caspase-3, BCL-2-associated X protein (BAX), B cell CLL/lymphoma 2 (BCL-2), and poly (ADP-ribose) polymerase-1 (PARP-1) expression in the immature rat brain. These findings conclude that folecitin is a flavone compound, and it might be a novel, natural and safe agent to curb oxidative stress and its downstream harmful effects, including inflammasome activation, neuroinflammation, and neurodegeneration. Further evaluation in a dose-dependent manner would be worth it in order to find a suitable dose regimen for NDs.

2.
Nutrients ; 11(6)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141884

RESUMEN

All over the world, metabolic syndrome constitutes severe health problems. Multiple factors have been reported in the pathogenesis of metabolic syndrome. Metabolic disorders result in reactive oxygen species (ROS) induced oxidative stress, playing a vital role in the development and pathogenesis of major health issues, including neurological disorders Alzheimer's disease (AD) Parkinson's disease (PD). Considerable increasing evidence indicates the substantial contribution of ROS-induced oxidative stress in neurodegenerative diseases. An imbalanced metabolism results in a defective antioxidant defense system, free radicals causing inflammation, cellular apoptosis, and tissue damage. Due to the annual increase in financial and social burdens, in addition to the adverse effects associated with available synthetic agents, treatment diversion from synthetic to natural approaches has occurred. Antioxidants are now being considered as convincing therapeutic agents against various neurodegenerative disorders. Therefore, medicinal herbs and fruits currently receive substantially more attention as commercial sources of antioxidants. In this review, we argue that ROS-targeted therapeutic interventions with naturally occurring antioxidant flavonoid, anthocyanin, and anthocyanin-loaded nanoparticles might be the ultimate treatment against devastating illnesses. Furthermore, we elucidate the hidden potential of the neuroprotective role of anthocyanins and anthocyanin-loaded nanoparticles in AD and PD neuropathies, which lack sufficient attention compared with other polyphenols, despite their strong antioxidant potential. Moreover, we address the need for future research studies of native anthocyanins and nano-based-anthocyanins, which will be helpful in developing anthocyanin treatments as therapeutic mitochondrial antioxidant drug-like regimens to delay or prevent the progression of neurodegenerative diseases, such as AD and PD.


Asunto(s)
Antocianinas/uso terapéutico , Antioxidantes/uso terapéutico , Encéfalo/efectos de los fármacos , Síndrome Metabólico/tratamiento farmacológico , Degeneración Nerviosa , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Animales , Antocianinas/efectos adversos , Antioxidantes/efectos adversos , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Mediadores de Inflamación/metabolismo , Síndrome Metabólico/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fármacos Neuroprotectores/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
3.
J Neuroinflammation ; 13(1): 286, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27821173

RESUMEN

BACKGROUND: Glutamate-induced excitotoxicity, oxidative damage, and neuroinflammation are believed to play an important role in the development of a number of CNS disorders. We recently reported that a high dose of glutamate could induce AMPK-mediated neurodegeneration in the postnatal day 7 (PND7) rat brain. Yet, the mechanism of glutamate-induced oxidative stress and neuroinflammation in the postnatal brain is not well understood. Here, we report for the first time the mechanism of glutamate-induced oxidative damage, neuroinflammation, and neuroprotection by polyphenolic anthocyanins in PND7. METHODS: PND7 rat brains, SH-SY5Y, and BV2 cells treated either alone with glutamate or in combination with anthocyanins and compound C were examined with Western blot and immunofluorescence techniques. Additionally, reactive oxygen species (ROS) assay and other ELISA kit assays were employed to know the therapeutic efficacy of anthocyanins against glutamate. RESULTS: A single injection of glutamate to developing rats significantly increased brain glutamate levels, activated and phosphorylated AMPK induction, and inhibited nuclear factor-E2-related factor 2 (Nrf2) after 2, 3, and 4 h in a time-dependent manner. In contrast, anthocyanin co-treatment significantly reduced glutamate-induced AMPK induction, ROS production, neuroinflammation, and neurodegeneration in the developing rat brain. Most importantly, anthocyanins increased glutathione (GSH and GSSG) levels and stimulated the endogenous antioxidant system, including Nrf2 and heme oxygenase-1 (HO-1), against glutamate-induced oxidative stress. Interestingly, blocking AMPK with compound C in young rats abolished glutamate-induced neurotoxicity. Similarly, all these experiments were replicated in SH-SY5Y cells by silencing AMPK with siRNA, which suggests that AMPK is the key mediator in glutamate-induced neurotoxicity. CONCLUSIONS: Here, we report for the first time that anthocyanins can potentially decrease glutamate-induced neurotoxicity in young rats. Our work demonstrates that glutamate is toxic to the developing rat brain and that anthocyanins can minimize the severity of glutamate-induced neurotoxicity in an AMPK-dependent manner.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antocianinas/farmacología , Antocianinas/uso terapéutico , Encefalitis/tratamiento farmacológico , Degeneración Nerviosa/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/genética , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Línea Celular Transformada , Ciclooxigenasa 2/metabolismo , Encefalitis/inducido químicamente , Activación Enzimática/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glutamina/toxicidad , Humanos , Degeneración Nerviosa/inducido químicamente , Neuroblastoma/patología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Nanoscale ; 7(37): 15225-37, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26315713

RESUMEN

The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aß) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.


Asunto(s)
Óxido de Aluminio/toxicidad , Péptidos beta-Amiloides/metabolismo , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos , Óxido de Aluminio/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos ICR
5.
Neurochem Res ; 40(5): 875-84, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25701025

RESUMEN

Glutamate-induced excitotoxicity due to over-activation of glutamate receptors and associated energy depletion (phosphorylation and activation of AMPK) results in neuronal cell death in various neurological disorders. Restoration of energy balance during an excitotoxic insult is critical for neuronal survival. Ascorbic acid (vitamin C), an essential nutrient with well-known antioxidant potential, protects the brain from oxidative damage in various models of neurodegeneration. In this study, we reported the therapeutic efficacy of vitamin C in response to glutamate-induced excitation, resulting in energy depletion and apoptosis in the hippocampus of the developing rat brain. A single subcutaneous injection of glutamate at two different concentrations (5 and 10 mg/kg) in postnatal day 7 rat pups increased brain glutamate levels and increased the protein expression of neuronal apoptotic markers. Both doses of glutamate upregulated the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2, cytochrome-c release, caspase-3 activation and the expression of PARP-1. However, co-treatment of vitamin C (250 mg/kg) with glutamate decreased brain glutamate levels and reversed the changes induced by glutamate in the developing hippocampus. Interestingly, only a high dose of glutamate caused the phosphorylation and activation of AMPK and induced neuronal cell death, whereas a low dose of glutamate failed to mediate these effects. Vitamin C supplementation reduced the glutamate-induced phosphorylation of AMPK and attenuated neuronal cell death, as assessed morphologically by Fluoro Jade B in the hippocampal CA1 region of the developing brain. Taken together, our results indicated that glutamate in both concentrations is toxic to the immature rat brain, whereas vitamin C is pharmacologically effective against glutamate-induced neurodegeneration.


Asunto(s)
Ácido Ascórbico/uso terapéutico , Encéfalo/efectos de los fármacos , Ácido Glutámico/toxicidad , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Animales , Animales Recién Nacidos , Ácido Ascórbico/farmacología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Relación Dosis-Respuesta a Droga , Masculino , Enfermedades Neurodegenerativas/patología , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA