Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutr Rev ; 81(9): 1144-1162, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-36633304

RESUMEN

CONTEXT: In preclinical Alzheimer's disease (AD), the brain gradually becomes insulin resistant. As a result, brain glucose utilization is compromised, causing a cellular energy deficit that leads to the accumulation of free radicals, which increases inflammation and damages neurons. When glucose utilization is impaired, ketone bodies offer an alternative energy source. Ketone bodies are synthesized from fats, obtained from either the diet or adipose tissue. Dietary medium-chain fatty acids (MCFAs), which are preferentially metabolized into ketone bodies, have the potential to supply the insulin-resistant brain with energy. OBJECTIVE: This systematic review and meta-analysis aims to review the effect of MCFA supplements on circulating ketone bodies and cognition in individuals with subjective cognitive decline, mild cognitive impairment, and AD. DATA SOURCES: A comprehensive search of electronic databases was performed on August 12, 2019, to retrieve all publications meeting the inclusion criteria. Alerts were then set to identify any publications after the search date up until January 31, 2021. DATA EXTRACTION: Data were extracted by 2 authors and assessed by a third. In total, 410 publications were identified, of which 16 (n = 17 studies) met the inclusion criteria. DATA ANALYSIS: All studies assessing change in levels of blood ketone bodies due to MCFA supplementation (n = 12) reported a significant increase. Cognition outcomes (measured in 13 studies), however, varied, ranging from no improvement (n = 4 studies) to improvement (n = 8 studies) or improvement only in apolipoprotein E allele 4 (APOE ε4) noncarriers (n = 2 studies). One study reported an increase in regional cerebral blood flow in APOE ε4 noncarriers and another reported an increase in energy metabolism in the brain. CONCLUSION: MCFA supplementation increases circulating ketone body levels, resulting in increased brain energy metabolism. Further research is required to determine whether this MCFA-mediated increase in brain energy metabolism improves cognition. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration number CRD42019146967.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/prevención & control , Apolipoproteína E4 , Ácidos Grasos/metabolismo , Cuerpos Cetónicos/metabolismo , Cuerpos Cetónicos/uso terapéutico , Insulina , Glucosa/metabolismo
2.
Food Funct ; 10(8): 4584-4592, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31347643

RESUMEN

The natural food-derived compound curcumin (from turmeric root) is known for its anti-inflammatory and anti-oxidant effects. However, due to its poor solubility when consumed in isolation, it is poorly bioavailable. In this crossover study we compared the bioavailability of curcumin from a meal containing either curcumin powder, turmeric powder or grated fresh turmeric root, all containing 400 mg of curcumin, along with mashed potatoes and cream. Healthy male participants consumed the meals following overnight fasting, and postprandial blood samples were taken to measure plasma curcuminoids (curcumin, dimethylcurcumin (DMC) and bisdimethylcurcumin (BDMC)). All plasma curcumin values refer to total curcumin (sum of free and conjugated curcumin). The meals were also analysed using confocal laser scanning microscopy to determine the location of curcuminoids. Both of the turmeric meals produced significantly higher amounts (p < 0.05) of plasma curcuminoids at 1-3 hours after the meal was consumed, as compared to the curcumin powder. Plasma curcumin Cmax was 4.9 ng ml-1 95% CI (confidence interval) [2.2, 7.5] for the fresh turmeric meal, 8.4 ng ml-1 95% CI [4.4, 12.48] for the turmeric powder meal and 0.19 ng ml-1 95% [-0.08, 0.47] for the curcumin powder meal. Plasma DMC and BDMC were significantly higher (p < 0.05) following the turmeric powder meal, compared with the fresh turmeric meal and the curcumin powder meal. Microscopy images showed that the curcuminoid particles were mostly confined within curcuminoid cells in the fresh turmeric meal. They were unconfined but in clusters in the turmeric powder meal, while the curcuminoid particles appeared smaller in the curcumin powder meal. Conclusion: curcumin bioavailability is enhanced when consumed as fresh or powdered turmeric, which could be due to the co-presence of other turmeric compounds and/or a turmeric matrix effect.


Asunto(s)
Curcuma/metabolismo , Curcumina/metabolismo , Extractos Vegetales/metabolismo , Adolescente , Adulto , Disponibilidad Biológica , Estudios Cruzados , Curcuma/química , Curcumina/química , Humanos , Masculino , Extractos Vegetales/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Polvos/química , Polvos/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA