Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Front Immunol ; 15: 1363947, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500879

RESUMEN

Introduction: Osteoarthritis (OA) is associated with excessive cartilage degradation, inflammation, and decreased autophagy. Insufficient efficacy of conventional monotherapies and poor tissue regeneration due to side effects are just some of the unresolved issues. Our previous research has shown that Calebin A (CA), a component of turmeric (Curcuma longa), has pronounced anti-inflammatory and anti-oxidative effects by modulating various cell signaling pathways. Whether CA protects chondrocytes from degradation and apoptosis in the OA environment (EN), particularly via the autophagy signaling pathway, is however completely unclear. Methods: To study the anti-degradative and anti-apoptotic effects of CA in an inflamed joint, an in vitro model of OA-EN was created and treated with antisense oligonucleotides targeting NF-κB (ASO-NF-κB), and IκB kinase (IKK) inhibitor (BMS-345541) or the autophagy inhibitor 3-methyladenine (3-MA) and/or CA to affect chondrocyte proliferation, degradation, apoptosis, and autophagy. The mechanisms underlying the CA effects were investigated by MTT assays, immunofluorescence, transmission electron microscopy, and Western blot analysis in a 3D-OA high-density culture model. Results: In contrast to OA-EN or TNF-α-EN, a treatment with CA protects chondrocytes from stress-induced defects by inhibiting apoptosis, matrix degradation, and signaling pathways associated with inflammation (NF-κB, MMP9) or autophagy-repression (mTOR/PI3K/Akt), while promoting the expression of matrix compounds (collagen II, cartilage specific proteoglycans), transcription factor Sox9, and autophagy-associated proteins (Beclin-1, LC3). However, the preventive properties of CA in OA-EN could be partially abrogated by the autophagy inhibitor 3-MA. Discussion: The present results reveal for the first time that CA is able to ameliorate the progression of OA by modulating autophagy pathway, inhibiting inflammation and apoptosis in chondrocytes, suggesting that CA may be a novel therapeutic compound for OA.


Asunto(s)
FN-kappa B , Osteoartritis , Humanos , Fosfatidilinositol 3-Quinasas , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Inflamación/metabolismo , Autofagia
2.
Life Sci ; 318: 121504, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36813082

RESUMEN

Colorectal cancer (CRC) is one of the leading malignant diseases worldwide with a high rate of metastasis and poor prognosis. Treatment options include surgery, which is usually followed by chemotherapy in advanced CRC. With treatment, cancer cells could become resistant to classical cytostatic drugs such as 5-fluorouracil (5-FU), oxaliplatin, cisplatin, and irinotecan, resulting in chemotherapeutic failure. For this reason, there is a high demand for health-preserving re-sensitization mechanisms including the complementary use of natural plant compounds. Calebin A and curcumin, two polyphenolic turmeric ingredients derived from the Asian Curcuma longa plant, demonstrate versatile anti-inflammatory and cancer-reducing abilities, including CRC-combating capacity. After an insight into their epigenetics-modifying holistic health-promoting effects, this review compares functional anti-CRC mechanisms of multi-targeting turmeric-derived compounds with mono-target classical chemotherapeutic agents. Furthermore, the reversal of resistance to chemotherapeutic drugs was presented by focusing on calebin A's and curcumin's capabilities to chemosensitize or re-sensitize CRC cells to 5-FU, oxaliplatin, cisplatin, and irinotecan. Both polyphenols enhance the receptiveness of CRC cells to standard cytostatic drugs converting them from chemoresistant into non-chemoresistant CRC cells by modulating inflammation, proliferation, cell cycle, cancer stem cells, and apoptotic signaling. Therefore, calebin A and curcumin can be tested for their ability to overcome cancer chemoresistance in preclinical and clinical trials. The future perspective of involving turmeric-ingredients curcumin or calebin A as an additive treatment to chemotherapy for patients with advanced metastasized CRC is explained.


Asunto(s)
Neoplasias Colorrectales , Curcumina , Citostáticos , Humanos , Curcumina/farmacología , Irinotecán/farmacología , Oxaliplatino/farmacología , Cisplatino/farmacología , Citostáticos/farmacología , Citostáticos/uso terapéutico , Línea Celular Tumoral , Fluorouracilo/farmacología , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos
3.
Life Sci ; 305: 120752, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779626

RESUMEN

Naringenin is an important phytochemical which belongs to the flavanone group of polyphenols, and is found mainly in citrus fruits like grapefruits and others such as tomatoes and cherries plus medicinal plants derived food. Available evidence demonstrates that naringenin, as herbal medicine, has important pharmacological properties, including anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities. Collected data from in vitro and in vivo studies show the inactivation of carcinogens after treatment with pure naringenin, naringenin-loaded nanoparticles, and also naringenin in combination with anti-cancer agents in various malignancies, such as colon cancer, lung neoplasms, breast cancer, leukemia and lymphoma, pancreatic cancer, prostate tumors, oral squamous cell carcinoma, liver cancer, brain tumors, skin cancer, cervical and ovarian cancer, bladder neoplasms, gastric cancer, and osteosarcoma. Naringenin inhibits cancer progression through multiple mechanisms, like apoptosis induction, cell cycle arrest, angiogenesis hindrance, and modification of various signaling pathways including Wnt/ß-catenin, PI3K/Akt, NF-ĸB, and TGF-ß pathways. In this review, we demonstrate that naringenin is a natural product with potential for the treatment of different types of cancer, whether it is used alone, in combination with other agents, or in the form of the naringenin-loaded nanocarrier, after proper technological encapsulation.


Asunto(s)
Carcinoma de Células Escamosas , Flavanonas , Neoplasias de la Boca , Carcinoma de Células Escamosas/tratamiento farmacológico , Flavanonas/farmacología , Flavanonas/uso terapéutico , Flavonoides , Humanos , Masculino , Neoplasias de la Boca/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
4.
Nutrients ; 14(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35631173

RESUMEN

Tendinitis (tendinopathy) is a pro-inflammatory and painful tendon disease commonly linked with mechanical overuse and associated injuries, drug abuse, and lifestyle factors (including poor diet and physical inactivity) that causes significant healthcare expenditures due to its high incidence. Nuclear factor kappa B (NF-κB) is one of the major pro-inflammatory transcription factors, along with other inflammation signaling pathways, triggered by a variety of stimuli, including cytokines, endotoxins, physical and chemical stressors, hypoxia, and other pro-inflammatory factors. Their activation is known to regulate the expression of a multitude of genes involved in inflammation, degradation, and cell death. The pathogenesis of tendinitis is still poorly understood, whereas efficient and sustainable treatment is missing. Targeting drug suppression of the key inflammatory regulators represents an effective strategy for tendinitis therapy, but requires a comprehensive understanding of their principles of action. Conventional monotherapies are often ineffective and associated with severe side effects in patients. Therefore, agents that modulate multiple cellular targets represent therapeutic treatment potential. Plant-derived nutraceuticals have been shown to act as multi-targeting agents against tendinitis via various anti-oxidant and anti-inflammatory mechanisms, whereat they were able to specifically modulate numerous signaling pathways, including NF-κB, p38/MAPK, JNK/STAT3, and PI3K/Akt, thus down-regulating inflammatory processes. This review discusses the utility of herbal nutraceuticals that have demonstrated safety and tolerability as anti-inflammatory agents for the prevention and treatment of tendinitis through the suppression of catabolic signaling pathways. Limitations associated with the use of nutraceuticals are also described.


Asunto(s)
FN-kappa B , Tendinopatía , Antiinflamatorios/uso terapéutico , Suplementos Dietéticos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas , Tendinopatía/tratamiento farmacológico
5.
Pharmaceutics ; 13(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672366

RESUMEN

Naringenin (NRG) is a polyphenolic phytochemical belonging to the class of flavanones and is widely distributed in citrus fruits and some other fruits such as bergamot, tomatoes, cocoa, and cherries. NRG presents several interesting pharmacological properties, such as anti-cancer, anti-oxidant, and anti-inflammatory activities. However, the therapeutic potential of NRG is hampered due to its hydrophobic nature, which leads to poor bioavailability. Here, we review a wide range of nanocarriers that have been used as delivery systems for NRG, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, and nanoemulsions. These nanomedicine formulations of NRG have been applied as a potential treatment for several diseases, using a wide range of in vitro, ex vivo, and in vivo models and different routes of administration. From this review, it can be concluded that NRG is a potential therapeutic option for the treatment of various diseases such as cancer, neurological disorders, liver diseases, ocular disorders, inflammatory diseases, skin diseases, and diabetes when formulated in the appropriate nanocarriers.

6.
Biomolecules ; 10(12)2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321708

RESUMEN

Metastasis represents a major obstacle in cancer treatment and the leading cause of cancer-related deaths. Therefore, the identification of compounds targeting the multi-step and complex process of metastasis could improve outcomes in the management of cancer patients. Carotenoids are naturally occurring pigments with a plethora of biological activities. Carotenoids exert a potent anti-cancer capacity in various cancer models in vitro and in vivo, mediated by the modulation of signaling pathways involved in the migration and invasion of cancer cells and metastatic progression, including key regulators of the epithelial-mesenchymal transition and regulatory molecules, such as matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), urokinase plasminogen activator (uPA) and its receptor (uPAR), hypoxia-inducible factor-1α (HIF-1α), and others. Moreover, carotenoids modulate the expression of genes associated with cancer progression and inflammatory processes as key mediators of the complex process involved in metastasis. Nevertheless, due to the predominantly preclinical nature of the known anti-tumor effects of carotenoids, and unclear results from certain carotenoids in specific cancer types and/or specific parts of the population, a precise analysis of the anti-cancer effects of carotenoids is essential. The identification of carotenoids as effective compounds targeting the complex process of cancer progression could improve the outcomes of advanced cancer patients.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Carotenoides/uso terapéutico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Metástasis de la Neoplasia/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/clasificación , Carotenoides/química , Carotenoides/clasificación , Quimioterapia Adyuvante , Transición Epitelial-Mesenquimal/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Aprendizaje Automático , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Medicina de Precisión , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Transducción de Señal , Inhibidores Tisulares de Metaloproteinasas/genética , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
7.
Cancers (Basel) ; 12(9)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859058

RESUMEN

An incidence and mortality of cancer are rapidly growing worldwide, especially due to heterogeneous character of the disease that is associated with irreversible impairment of cellular homeostasis and function. Targeting apoptosis, one of cancer hallmarks, represents a potent cancer treatment strategy. Carotenoids are phytochemicals represented by carotenes, xanthophylls, and derived compounds such as apocarotenoids that demonstrate a broad spectrum of anti-cancer effects involving pro-apoptotic signaling through extrinsic and intrinsic pathways. As demonstrated in preclinical oncology research, the apoptotic modulation is performed at post-genomic levels. Further, carotenoids demonstrate additive/synergistic action in combination with conventional oncostatic agents. In addition, a sensitization of tumor cells to anti-cancer conventional treatment can be achieved by carotenoids. The disadvantage of anti-cancer application of carotenoids is associated with their low solubility and, therefore, poor bioavailability. However, this deficiency can be improved by using nanotechnological approaches, solid dispersions, microemulsions or biofortification that significantly increase the anti-cancer and pro-apoptotic efficacy of carotenoids. Only limited number of studies dealing with apoptotic potential of carotenoids has been published in clinical sphere. Pro-apoptotic effects of carotenoids should be beneficial for individuals at high risk of cancer development. The article considers the utility of carotenoids in the framework of 3P medicine.

8.
Molecules ; 25(13)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640693

RESUMEN

It is estimated that by 2023, approximately 20% of the population of Western Europe and North America will suffer from a degenerative joint disease commonly known as osteoarthritis (OA). During the development of OA, pro-inflammatory cytokines are one of the major causes that drive the production of inflammatory mediators and thus of matrix-degrading enzymes. OA is a challenging disease for doctors due to the limitation of the joint cartilage's capacity to repair itself. Though new treatment approaches, in particular with mesenchymal stem cells (MSCs) that integrate the tissue engineering (TE) of cartilage tissue, are promising, they are not only expensive but more often do not lead to the regeneration of joint cartilage. Therefore, there is an increasing need for novel, safe, and more effective alternatives to promote cartilage joint regeneration and TE. Indeed, naturally occurring phytochemical compounds (herbal remedies) have a great anti-inflammatory, anti-oxidant, and anabolic potential, and they have received much attention for the development of new therapeutic strategies for the treatment of inflammatory diseases, including the prevention of age-related OA and cartilage TE. This paper summarizes recent research on herbal remedies and their chondroinductive and chondroprotective effects on cartilage and progenitor cells, and it also emphasizes the possibilities that exist in this research area, especially with regard to the nutritional support of cartilage regeneration and TE, which may not benefit from non-steroidal anti-inflammatory drugs (NSAIDs).


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Cartílago/efectos de los fármacos , Osteoartritis/prevención & control , Osteoartritis/terapia , Fitoquímicos/farmacología , Plantas Medicinales/química , Ingeniería de Tejidos/métodos , Curcumina/farmacología , Flavonoides/farmacología , Zingiber officinale/metabolismo , Células Madre Mesenquimatosas/metabolismo , Persea/química , Fitoquímicos/uso terapéutico , Granada (Fruta)/química , Regeneración/efectos de los fármacos , Resveratrol/farmacología , Glycine max/química
9.
J Neuroinflammation ; 17(1): 183, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532285

RESUMEN

BACKGROUND: Recently, mineralocorticoid receptors (MR) were identified in peripheral nociceptive neurons, and their acute antagonism was responsible for immediate and short-lasting (non-genomic) antinociceptive effects. The same neurons were shown to produce the endogenous ligand aldosterone by the enzyme aldosterone synthase. METHODS: Here, we investigate whether endogenous aldosterone contributes to inflammation-induced hyperalgesia via the distinct genomic regulation of specific pain signaling molecules in an animal model of Freund's complete adjuvant (FCA)-induced hindpaw inflammation. RESULTS: Chronic intrathecal application of MR antagonist canrenoate-K (over 4 days) attenuated nociceptive behavior in rats with FCA hindpaw inflammation suggesting a tonic activation of neuronal MR by endogenous aldosterone. Consistently, double immunofluorescence confocal microscopy showed abundant co-localization of MR with several pain signaling molecules such as TRPV1, CGRP, Nav1.8, and trkA whose enhanced expression of mRNA and proteins during inflammation was downregulated following i.t. canrenoate-K. More importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by continuous intrathecal delivery of a specific aldosterone synthase inhibitor prevented the inflammation-induced enhanced transcriptional expression of TRPV1, CGRP, Nav1.8, and trkA and subsequently attenuated nociceptive behavior. Evidence for such a genomic effect of endogenous aldosterone was supported by the demonstration of an enhanced nuclear translocation of MR in peripheral sensory dorsal root ganglia (DRG) neurons. CONCLUSION: Taken together, chronic inhibition of local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons may contribute to long-lasting downregulation of specific pain signaling molecules and may, thus, persistently reduce inflammation-induced hyperalgesia.


Asunto(s)
Aldosterona/metabolismo , Hiperalgesia/metabolismo , Inflamación/metabolismo , Dolor/metabolismo , Animales , Citocromo P-450 CYP11B2/antagonistas & inhibidores , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacología , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Ratas , Ratas Wistar , Receptores de Mineralocorticoides/efectos de los fármacos , Receptores de Mineralocorticoides/metabolismo
10.
Anesthesiology ; 132(4): 867-880, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32011337

RESUMEN

BACKGROUND: Recent emerging evidence suggests that extra-adrenal synthesis of aldosterone occurs (e.g., within the failing heart and in certain brain areas). In this study, the authors investigated evidence for a local endogenous aldosterone production through its key processing enzyme aldosterone synthase within peripheral nociceptive neurons. METHODS: In male Wistar rats (n = 5 to 8 per group) with Freund's complete adjuvant hind paw inflammation, the authors examined aldosterone, aldosterone synthase, and mineralocorticoid receptor expression in peripheral sensory neurons using quantitative reverse transcriptase-polymerase chain reaction, Western blot, immunohistochemistry, and immunoprecipitation. Moreover, the authors explored the nociceptive behavioral changes after selective mineralocorticoid receptor antagonist, canrenoate-K, or specific aldosterone synthase inhibitor application. RESULTS: In rats with Freund's complete adjuvant-induced hind paw inflammation subcutaneous and intrathecal application of mineralocorticoid receptor antagonist, canrenoate-K, rapidly and dose-dependently attenuated nociceptive behavior (94 and 48% reduction in mean paw pressure thresholds, respectively), suggesting a tonic activation of neuronal mineralocorticoid receptors by an endogenous ligand. Indeed, aldosterone immunoreactivity was abundant in peptidergic nociceptive neurons of dorsal root ganglia and colocalized predominantly with its processing enzyme aldosterone synthase and mineralocorticoid receptors. Moreover, aldosterone and its synthesizing enzyme were significantly upregulated in peripheral sensory neurons under inflammatory conditions. The membrane mineralocorticoid receptor consistently coimmunoprecipitated with endogenous aldosterone, confirming a functional link between mineralocorticoid receptors and its endogenous ligand. Importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by a specific aldosterone synthase inhibitor attenuated nociceptive behavior after hind paw inflammation (a 32% reduction in paw pressure thresholds; inflammation, 47 ± 2 [mean ± SD] vs. inflammation + aldosterone synthase inhibitor, 62 ± 2). CONCLUSIONS: Local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons contributes to ongoing mechanical hypersensitivity during local inflammation via intrinsic activation of neuronal mineralocorticoid receptors.


Asunto(s)
Citocromo P-450 CYP11B2/biosíntesis , Hiperalgesia/metabolismo , Dimensión del Dolor/métodos , Células Receptoras Sensoriales/metabolismo , Adyuvantes Inmunológicos/toxicidad , Aldosterona/biosíntesis , Animales , Adyuvante de Freund/toxicidad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Dimensión del Dolor/efectos de los fármacos , Estimulación Física/efectos adversos , Ratas , Ratas Wistar , Células Receptoras Sensoriales/efectos de los fármacos
11.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443458

RESUMEN

Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson's disease, Alzheimer's, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.


Asunto(s)
Triterpenos/farmacología , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/farmacología , Enfermedad Crónica/tratamiento farmacológico , Humanos , Ratones , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Extractos Vegetales/farmacología , Relación Estructura-Actividad , Triterpenos/administración & dosificación , Triterpenos/química , Triterpenos/farmacocinética
12.
Exp Biol Med (Maywood) ; 244(8): 663-689, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30961357

RESUMEN

IMPACT STATEMENT: The success rate for cancer drugs which enter into phase 1 clinical trials is utterly less. Why the vast majority of drugs fail is not understood but suggests that pre-clinical studies are not adequate for human diseases. In 1975, as per the Tufts Center for the Study of Drug Development, pharmaceutical industries expended 100 million dollars for research and development of the average FDA approved drug. By 2005, this figure had more than quadrupled, to $1.3 billion. In order to recover their high and risky investment cost, pharmaceutical companies charge more for their products. However, there exists no correlation between drug development cost and actual sale of the drug. This high drug development cost could be due to the reason that all patients might not respond to the drug. Hence, a given drug has to be tested in large number of patients to show drug benefits and obtain significant results.


Asunto(s)
Antineoplásicos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/economía , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores , Biomarcadores de Tumor/sangre , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Países en Desarrollo , Aprobación de Drogas , Costos de los Medicamentos , Diseño de Fármacos , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Genoma Humano , Humanos , Mutación , Neoplasias/economía , Neoplasias/epidemiología , Neoplasias/genética , Medicina de Precisión/tendencias , Prevención Primaria , Modelos de Riesgos Proporcionales , Terapia por Relajación , Especificidad de la Especie , Análisis de Supervivencia , Estados Unidos , United States Food and Drug Administration
13.
Biotechnol Adv ; 36(6): 1633-1648, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29597029

RESUMEN

Bone loss or osteoporosis, is a slow-progressing disease that results from dysregulation of pro-inflammatory cytokines. The FDA has approved number of drugs for bone loss prevention, nonetheless all are expensive and have multiple side effects. The nutraceuticals identified from dietary agents such as butein, cardamonin, coronarin D curcumin, diosgenin, embelin, gambogic acid, genistein, plumbagin, quercetin, reseveratrol, zerumbone and more, can modulate cell signaling pathways and reverse/slow down osteoporosis. Most of these nutraceuticals are inexpensive; show no side effect while still possessing anti-inflammatory properties. This review provides various mechanisms of osteoporosis and how nutraceuticals can potentially prevent the bone loss.


Asunto(s)
Densidad Ósea/efectos de los fármacos , Huesos , Suplementos Dietéticos , Fitoquímicos , Fitoestrógenos , Animales , Remodelación Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/fisiología , Células Cultivadas , Humanos
14.
Cancer Prev Res (Phila) ; 8(5): 431-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25712055

RESUMEN

Colorectal cancer is one of the most common causes of cancer-associated mortality worldwide, but it is truly a preventable disease. Both curcumin and boswellic acids are well-established dietary botanicals with potent antitumorigenic properties that have been shown to modulate multiple oncogenic pathways. Recent data suggest that the chemopreventive effects of these botanicals may, in part, be mediated through regulation of key cancer-related microRNAs (miRNA) and their downstream gene targets. Here, we investigated the antitumorigenic effects of curcumin and 3 acetyl-11-keto-ß-boswellic acid (AKBA) on modulation of specific cancer-related miRNAs in colorectal cancer cells and validated their protective effects in vivo using a xenograft mouse model. Both curcumin and AKBA inhibited cellular proliferation, induced apoptosis and cell-cycle arrest in colorectal cancer cell lines, and these effects were significantly enhanced with combined treatment. Gene-expression arrays revealed that curcumin and AKBA regulated distinct cancer signaling pathways, including key cell-cycle regulatory genes. Combined bioinformatics and in silico analysis identified apoptosis, proliferation, and cell-cycle regulatory signaling pathways as key modulators of curcumin and AKBA-induced anticancer effects. We discovered that curcumin and AKBA induced upregulation of tumor-suppressive miR-34a and downregulation of miR-27a in colorectal cancer cells. Furthermore, we demonstrated in a mouse xenograft model that both curcumin and AKBA treatments suppressed tumor growth, which corresponded with alterations in the expression of miR-34a and miR-27a, consistent with our in vitro findings. Herein, we provide novel mechanistic evidence for the chemopreventive effects of curcumin and AKBA through regulation of specific miRNAs in colorectal cancer.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Curcumina/uso terapéutico , MicroARNs/genética , Triterpenos/uso terapéutico , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Células CACO-2 , Línea Celular Tumoral , Quimioprevención/métodos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Masculino , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
PLoS One ; 8(2): e57218, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23451189

RESUMEN

OBJECTIVE: Development of treatment resistance and adverse toxicity associated with classical chemotherapeutic agents highlights the need for safer and effective therapeutic approaches. Herein, we examined the effectiveness of a combination treatment regimen of 5-fluorouracil (5-FU) and curcumin in colorectal cancer (CRC) cells. METHODS: Wild type HCT116 cells and HCT116+ch3 cells (complemented with chromosome 3) were treated with curcumin and 5-FU in a time- and dose-dependent manner and evaluated by cell proliferation assays, DAPI staining, transmission electron microscopy, cell cycle analysis and immunoblotting for key signaling proteins. RESULTS: The individual IC50 of curcumin and 5-FU were approximately 20 µM and 5 µM in HCT116 cells and 5 µM and 1 µM in HCT116+ch3 cells, respectively (p<0.05). Pretreatment with curcumin significantly reduced survival in both cells; HCT116+ch3 cells were considerably more sensitive to treatment with curcumin and/or 5-FU than wild-type HCT116 cells. The IC50 values for combination treatment were approximately 5 µM and 1 µM in HCT116 and 5 µM and 0.1 µM in HCT116+ch3, respectively (p<0.05). Curcumin induced apoptosis in both cells by inducing mitochondrial degeneration and cytochrome c release. Cell cycle analysis revealed that the anti-proliferative effect of curcumin and/or 5-FU was preceded by accumulation of CRC cells in the S cell cycle phase and induction of apoptosis. Curcumin potentiated 5-FU-induced expression or cleavage of pro-apoptotic proteins (caspase-8, -9, -3, PARP and Bax), and down-regulated anti-apoptotic (Bcl-xL) and proliferative (cyclin D1) proteins. Although 5-FU activated NF-κB/PI-3K/Src pathway in CRC cells, this was down-regulated by curcumin treatment through inhibition of IκBα kinase activation and IκBα phosphorylation. CONCLUSIONS: Combining curcumin with conventional chemotherapeutic agents such as 5-FU could provide more effective treatment strategies against chemoresistant colon cancer cells. The mechanisms involved may be mediated via NF-κB/PI-3K/Src pathways and NF-κB regulated gene products.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Curcumina/farmacología , Fluorouracilo/uso terapéutico , FN-kappa B/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Sinergismo Farmacológico , Humanos , Microscopía Electrónica de Transmisión , Familia-src Quinasas/metabolismo
16.
Int J Mol Sci ; 13(4): 4202-4232, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22605974

RESUMEN

Interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) are key cytokines that drive the production of inflammatory mediators and matrix-degrading enzymes in osteoarthritis (OA). These proinflammatory cytokines bind to their respective cell surface receptors and activate inflammatory signaling pathways culminating with the activation of nuclear factor κB (NF-κB), a transcription factor that can be triggered by a host of stress-related stimuli including, excessive mechanical stress and ECM degradation products. Once activated, NF-κB regulates the expression of many cytokines, chemokines, adhesion molecules, inflammatory mediators, and several matrix-degrading enzymes. Therefore, proinflammatory cytokines, their cell surface receptors, NF-κB and downstream signaling pathways are therapeutic targets in OA. This paper critically reviews the recent literature and outlines the potential prophylactic properties of plant-derived phytochemicals such as curcumin and resveratrol for targeting NF-κB signaling and inflammation in OA to determine whether these phytochemicals can be used as functional foods.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Curcumina/uso terapéutico , Inflamación/tratamiento farmacológico , Articulaciones/patología , Osteoartritis/tratamiento farmacológico , Estilbenos/uso terapéutico , Inhibidores de la Angiogénesis/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Artritis Reumatoide/patología , Cartílago Articular/patología , Cartílago Articular/fisiología , Condrocitos/metabolismo , Humanos , Interleucina-1beta/inmunología , Osteoartritis/patología , Fitoquímicos/uso terapéutico , Fitoterapia/métodos , Resveratrol , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/inmunología
17.
Artículo en Inglés | MEDLINE | ID: mdl-22474508

RESUMEN

The aim of this study was to characterize the anti-inflammatory mode of action of botanical extracts from rosehip (Rosa canina), willow bark (Salix alba), and nettle leaf (Urtica dioica) in an in vitro model of primary canine articular chondrocytes. Methods. The biological effects of the botanical extracts were studied in chondrocytes treated with IL-1ß for up to 72 h. Expression of collagen type II, cartilage-specific proteoglycan (CSPG), ß1-integrin, SOX-9, COX-2, and MMP-9 and MMP-13 was examined by western blotting. Results. The botanical extracts suppressed IL-1ß-induced NF-κB activation by inhibition of IκBα phosphorylation, IκBα degradation, p65 phosphorylation, and p65 nuclear translocation. These events correlated with downregulation of NF-κB targets including COX-2 and MMPs. The extracts also reversed the IL-1ß-induced downregulation of collagen type II, CSPG, ß1-integrin, and cartilage-specific transcription factor SOX-9 protein expression. In high-density cultures botanical extracts stimulated new cartilage formation even in the presence of IL-1ß. Conclusions. Botanical extracts exerted anti-inflammatory and anabolic effects on chondrocytes. The observed reduction of IL-1ß-induced NF-κB activation suggests that further studies are warranted to demonstrate the effectiveness of plant extracts in the treatment of OA and other conditions in which NF-κB plays pathophysiological roles.

18.
Mol Nutr Food Res ; 53(1): 115-28, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19072742

RESUMEN

Resveratrol, a polyphenol derived from red grapes, berries, and peanuts, has been shown to mediate death of a wide variety of cells. The mechanisms by which resveratrol mediates cell death include necrosis, apoptosis, autophagy, and others. While most studies suggest that resveratrol kills tumor cells selectively, evidence is emerging that certain normal cells such as endothelial cells, lymphocytes, and chondrocytes are vulnerable to resveratrol. Cell killing by this stilbene may be mediated through any of numerous mechanisms that involve activation of mitochondria and of death caspases; upregulation of cyclin-dependent kinase inhibitors, tumor suppressor gene products, or death-inducing cytokines and cytokine receptors; or downregulation of cell survival proteins (survivin, cFLIP, cIAPs, X-linked inhibitor of apoptosis protein (XIAP), bcl-2, bcl-XL) or inhibition of cell survival kinases (e.g., mitogen-activiated protein kinases (MAPKs), AKT/phosphoinositide 3-kinase (PI3K), PKC, EGFR kinase) and survival transcription factors (nuclear factor-kappaB (NF-kappaB), activating protein 1 (AP-1), HIF-1alpha, signal transducer and activator of transcription (STAT3)). Induction of any of these pathways by resveratrol leads to cell death. While cell death is a hallmark of resveratrol, this polyphenol also has been linked with suppression of inflammation, arthritis, and cardiovascular diseases and delaying of aging. These attributes of resveratrol are discussed in detail in this review.


Asunto(s)
Anticarcinógenos/farmacología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estilbenos/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/efectos adversos , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Anticarcinógenos/uso terapéutico , Apoptosis/efectos de los fármacos , Cardiotónicos/efectos adversos , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Frutas , Humanos , Receptores de Estrógenos/efectos de los fármacos , Resveratrol , Estilbenos/efectos adversos , Estilbenos/aislamiento & purificación , Estilbenos/farmacología , Trastornos Relacionados con Sustancias
19.
Biochem Pharmacol ; 76(11): 1426-39, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18606398

RESUMEN

Osteoarthritis is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective on pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Resveratrol is a phytoalexin stilbene produced naturally by plants including red grapes, peanuts and various berries. Recent research in various cell models has demonstrated that resveratrol is safe and has potent anti-inflammatory properties. However, its potential for treating arthritic conditions has not been explored. In this study we provide experimental evidence that resveratrol inhibits the expression of VEGF, MMP-3, MMP-9 and COX-2 in human articular chondrocytes stimulated with the pro-inflammatory cytokine IL-1beta. Since these gene products are regulated by the transcription factor NF-kappaB, we investigated the effects of resveratrol on IL-1beta-induced NF-kappaB signaling pathway. Resveratrol, like N-Ac-Leu-Leu-norleucinal (ALLN) suppressed IL-1beta-induced proteasome function and the degradation of IkappaBalpha (an inhibitor of NF-kappaB) without affecting IkappaBalpha kinase activation, IkappaBalpha-phosphorylation or IkappaBalpha-ubiquitination which suppressed nuclear translocation of the p65 subunit of NF-kappaB and its phosphorylation. Furthermore, we observed that resveratrol as well as ALLN inhibited IL-1beta-induced apoptosis, caspase-3 activation and PARP cleavage in human articular chondrocytes. In summary, our results suggest that resveratrol suppresses apoptosis and inflammatory signaling through its actions on the NF-kappaB pathway in human chondrocytes. We propose that resveratrol should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.


Asunto(s)
Apoptosis/efectos de los fármacos , Cartílago Articular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Suplementos Dietéticos , Mediadores de Inflamación/metabolismo , Interleucina-1beta/fisiología , Osteoartritis/terapia , Transducción de Señal/efectos de los fármacos , Estilbenos/farmacología , Apoptosis/fisiología , Western Blotting , Cartílago Articular/citología , Cartílago Articular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Condrocitos/ultraestructura , Relación Dosis-Respuesta a Droga , Matriz Extracelular/metabolismo , Humanos , Microscopía Electrónica de Transmisión , FN-kappa B/metabolismo , Transporte de Proteínas , Resveratrol , Transducción de Señal/fisiología , Estilbenos/uso terapéutico
20.
Biochem Pharmacol ; 73(9): 1434-45, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17291458

RESUMEN

Pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) play a key role in the pathogenesis of osteoarthritis (OA). Anti-inflammatory agents capable of suppressing the production and catabolic actions of these cytokines may have therapeutic potential in the treatment of OA and a range of other osteoarticular disorders. The purpose of this study was to examine the effects of curcumin (diferuloylmethane), a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in human articular chondrocytes maintained in vitro. The effects of curcumin were studied in cultures of human articular chondrocytes treated with IL-1beta and TNF-alpha for up to 72h. Expression of collagen type II, integrin beta1, cyclo-oxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9) was monitored by western blotting. The effects of curcumin on the expression, phosphorylation and nuclear translocation of protein components of the NF-kappaB system were studied by western blotting and immunofluorescence, respectively. Treatment of chondrocytes with curcumin suppressed IL-1beta-induced NF-kappaB activation via inhibition of IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation and p65 nuclear translocation. Curcumin inhibited the IL-1beta-induced stimulation of up-stream protein kinase B Akt. These events correlated with down-regulation of NF-kappaB targets including COX-2 and MMP-9. Similar results were obtained in chondrocytes stimulated with TNF-alpha. Curcumin also reversed the IL-1beta-induced down-regulation of collagen type II and beta1-integrin receptor expression. These results indicate that curcumin has nutritional potential as a naturally occurring anti-inflammatory agent for treating OA through suppression of NF-kappaB mediated IL-1beta/TNF-alpha catabolic signalling pathways in chondrocytes.


Asunto(s)
Condrocitos/efectos de los fármacos , Curcumina/farmacología , Ciclooxigenasa 2/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas de la Membrana/metabolismo , FN-kappa B/antagonistas & inhibidores , Transporte Biológico , Núcleo Celular/metabolismo , Condrocitos/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Interleucina-1beta/farmacología , FN-kappa B/metabolismo , Proteína Oncogénica v-akt/metabolismo , Osteoartritis/tratamiento farmacológico , Fosforilación , Transducción de Señal/efectos de los fármacos , Sinaptotagmina I/metabolismo , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA