Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 126: 155267, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368795

RESUMEN

BACKGROUND: Inhibition of NF-κB activity represents a strategy to treat acute myeloid leukemia, one of the most lethal leukemia types. Naphthylisoquinolines (NIQs) are cytotoxic alkaloids from lianas of the families Ancistrocladaceae and Dioncophyllaceae, which are indigenous to tropical rainforests. PURPOSE: Uncovering therapeutic possibilities and underlying molecular mechanisms of dioncophylline A and its derivatives towards NF-κB related cellular processes. METHODS: Resazurin-based cell viability assay was performed for dioncophylline A and three derivatives on wild-type CCRF-CEM and multidrug-resistant CEM/ADR5000 cells. Transcriptome analysis was executed to discover cellular functions and molecular networks associated with dioncophylline A treatment. Expression changes obtained by mRNA microarray hybridization were confirmed using qRT-PCR. Molecular docking was applied to predict the affinity of the NIQs with NF-κB. To validate the in silico approach, NF-κB reporter assays were conducted on HEK-Blue™ Null1 cells. Cell death mechanisms and cell cycle arrest were studied using flow cytometry. The potential activity on angiogenesis was evaluated with the endothelial cell tube formation assay on HUVECs using fluorescence microscopy. Intracellular NF-κB location in HEK-Blue™ Null1 cells was visualized with immunofluorescence. Finally, the anti-tumor activity of dioncophylline A was studied by a xenograft zebrafish model in vivo. RESULTS: Our study demonstrated that dioncophylline A and its derivatives exerted potent cytotoxicity on leukemia cells. Using Ingenuity Pathway Analysis, we identified the NF-κB network as the top network, and docking experiments predicted dioncophylline A and two of its derivatives sharing the same binding pocket with the positive control compound, triptolide. Dioncophylline A showed the best inhibitory activity in NF-κB reporter assays compared to its derivatives, caused autophagy rather than apoptosis, and induced G2/M arrest. It also prevented NF-κB translocation from the cytoplasm to the nucleus. Tube formation as an angiogenesis marker was significantly suppressed by dioncophylline A treatment. Finally, the remarkable anti-tumor activity of dioncophylline A was proven in zebrafish in vivo. CONCLUSION: Taken together, we report for the first time the molecular mechanism behind the cytotoxic effect of dioncophylline A on leukemia cells. Dioncophylline A showed strong cytotoxic activity, inhibited NF-κB translocation, significantly affected the NF-κB in silico and in vitro, subdued tube formation, induced autophagy, and exerted antitumor activity in vivo. Our findings enlighten both the cellular functions including the NF-κB signaling pathway and the cytotoxic mechanism affected by dioncophylline A.


Asunto(s)
Antineoplásicos , Isoquinolinas , Leucemia , Animales , Humanos , FN-kappa B/metabolismo , Pez Cebra/metabolismo , Apoptosis , Simulación del Acoplamiento Molecular , Angiogénesis , Puntos de Control de la Fase G2 del Ciclo Celular , Línea Celular Tumoral , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular , Autofagia
2.
J Ethnopharmacol ; 325: 117746, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38216098

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cornstigma (CS), derived from the stigma and style of gramineous plant Zeamays. The medicinal use of CS can be traced back to DianNanMateriaMedica. LingnanMedicinalPlantsCompendium records its effectiveness in ameliorating diabetes. Diabetes is a metabolic disorder characterized by hyperglycemia and the consequent chronic complications of kidney, heart, brain and other organs, which pose a significant threat to human health. CS has shown great potential in relieving hyperglycemia associated with diabetes. However, the mechanism of CS in treating diabetes remains unclear. AIM OF THE STUDY: To explore the pathogenesis of diabetes and the mechanism of CS improving hyperglycemia in diabetes. MATERIALS AND METHODS: We measured apigenin and luteolin contents in CS by UPLC/MS/MS method. Selecting Wistar rats as normal group, and GK rats as model group. For rats, we detected glucose and lipid metabolism indicators, including GHb, AST, ALT, U-Glu, UA, U-TP, U-ALB, and ACR after treatment. For zebrafish, we utilized alloxan and sucrose to establish the diabetes model. Measuring zebrafish blood glucose is employed to evaluate the hypoglycemic capability of CS. In order to explore the mechanism of CS in treating diabetes, we sequenced the transcriptome of zebrafish, compared differentially expressed genes of normal, diabetic, and CS-treated group, and validated multiple enrichment pathways by PCR. RESULTS: CS can improve blood glucose levels in both GK rats and diabetic zebrafish. For rats, CS partially restored glucose and lipid metabolism indicators. Transcriptome data from zebrafish showed a close correlation with steroid biosynthesis. The RNA-Sequencing was consistent with PCR results, indicating that CS downregulated gene (fdft1,lss,cyp51) expression concerned with steroid biosynthesis pathway in the diabetes model. CONCLUSION: CS effectively improved blood glucose levels, regulated glucose and lipid metabolism by suppressing gene expression in steroid biosynthesis pathway, and ameliorated hyperglycemia. Our research provides valuable insights for CS in the treatment of diabetes, and proposes a new strategy for selecting clinical medications for diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Ratas , Humanos , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Pez Cebra , Glucemia , Zea mays , Espectrometría de Masas en Tándem , Ratas Wistar , Hiperglucemia/complicaciones , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Esteroides
3.
Chin J Integr Med ; 29(4): 333-340, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35089525

RESUMEN

OBJECTIVE: To evaluate toxicity of raw extract of Panax notoginseng (rPN) and decocted extract of PN (dPN) by a toxicological assay using zebrafish larvae, and explore the mechanism by RNA sequencing assay. METHODS: Zebrafish larvae was used to evaluate acute toxicity of PN in two forms: rPN and dPN. Three doses (0.5, 1.5, and 5.0 µ g/mL) of dPN were used to treat zebrafishes for evaluating the developmental toxicity. Behavior abnormalities, body weight, body length and number of vertebral roots were used as specific phenotypic endpoints. RNA sequencing (RNA-seq) assay was applied to clarify the mechanism of acute toxicity, followed by real time PCR (qPCR) for verification. High performance liquid chromatography analysis was performed to determine the chemoprofile of this herb. RESULTS: The acute toxicity result showed that rPN exerted higher acute toxicity than dPN in inducing death of larval zebrafishes (P<0.01). After daily oral intake for 21 days, dPN at doses of 0.5, 1.5 and 5.0 µ g/mL decreased the body weight, body length, and vertebral number of larval zebrafishes, indicating developmental toxicity of dPN. No other adverse outcome was observed during the experimental period. RNA-seq data revealed 38 genes differentially expressed in dPN-treated zebrafishes, of which carboxypeptidase A1 (cpa1) and opioid growth factor receptor-like 2 (ogfrl2) were identified as functional genes in regulating body development of zebrafishes. qPCR data showed that dPN significantly down-regulated the mRNA expressions of cpa1 and ogfrl2 (both P<0.01), verifying cpa1 and ogfrl2 as target genes for dPN. CONCLUSION: This report uncovers the developmental toxicity of dPN, suggesting potential risk of its clinical application in children.


Asunto(s)
Panax notoginseng , Saponinas , Animales , Pez Cebra/genética , Saponinas/farmacología , Panax notoginseng/química , Larva , Análisis de Secuencia de ARN
4.
Phytomedicine ; 100: 154071, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35378415

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a difficult disease but the clinic lacks effective therapy. As a classic formula of traditional Chinese medicine (TCM), Fuzi decoction (FZD) has been clinically applied for treating OA-related syndromes, but its anti-OA efficacy and mechanism remain unclear. PURPOSE: To experimentally and clinically determine the anti-OA efficacy of FZD and clarify the underlying mechanism. METHODS: UPLC/MS/MS was applied to identify the main components of FZD. A monoiodoacetate (MIA)-induced OA rat model was employed to evaluate the in vivo efficacy of FZD against OA, by using pain behavior assessment, histopathological observation, and immunohistochemical analysis. Primary rat chondrocytes were isolated to determine the in vitro effects of FZD by using cell viability assay, wound healing assay, and real-time PCR (qPCR) analysis on anabolic/catabolic mRNA expressions. RNA sequencing (RNA-seq) and network pharmacology analysis were conducted and the overlapping data were used to predict the mechanism of FZD, followed by verification with qPCR and Western blot assays. Finally, a retrospective analysis was performed to confirm FZD's efficacy and safety in OA patients. RESULTS: The UPLC/MS/MS result showed that FZD contained atractylenolide I, benzoylhypaconitine, benzoylmesaconitine, benzoylaconitine, hypaconitine, mesaconitine, aconitine, lobetyolin, paeoniflorin, and pachymic acid. The in vivo data showed that FZD restored the cartilage degeneration in MIA-induced OA rats by ameliorating pain behavior parameters, recovering histopathological alterations, benefitting cartilage anabolism (up-regulating Col2 expression), and suppressing catabolism (down-regulating MMP13 and Col10 expressions). The in vitro data showed that FZD increased cell viability and wound healing capacity of chondrocytes, and restored the altered expressions of anabolic and catabolic genes of chondrocytes. The overlapping results of RNA-seq and network pharmacology analysis suggested that PI3K/Akt signaling mediated the anti-OA mechanism of FZD, which was verified by qPCR and Western blot experiments. Clinically, the anti-OA efficacy and safety of FZD were confirmed by the retrospective analysis on OA patients. CONCLUSION: The scientific innovation of this study was the determination of anti-OA efficacy of FZD by experimental and clinical evidence and the discovery of its mechanism by integrated RNA-seq, network pharmacology, and molecular experiments, which suggests FZD as a promising TCM agency for OA treatment.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Cartílago , Diterpenos , Medicamentos Herbarios Chinos , Humanos , Osteoartritis/patología , Dolor/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Estudios Retrospectivos , Transducción de Señal , Espectrometría de Masas en Tándem
5.
J Ethnopharmacol ; 292: 115214, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35331874

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Salviae miltiorrhizae (also called Danshen in traditional Chinese medicine) is a famous herbal medicine, which has been frequently used to treat blood stasis syndrome including osteosarcoma (OS) in traditional Chinese medicine. Main components of Danshen have been assumed to exhibit anti-OS capacity. Nevertheless, tanshinol (TS, main component of Danshen)'s efficacy and mechanism in OS hasn't been clearly described ever since. This drew our attention, since OS is the most frequent primary bone carcinomas in children and adolescents, with a high incidence and fatality rate. Unfortunately, chemotherapy for OS has faced many clinical challenges due to the increasing chemoresistance and recurrence. This study was then designed to deeply explore TS's role in OS therapy. AIM OF THE STUDY: To explore the anti-OS efficacy and mechanism of TS, we conducted in vivo and in vitro experiments by using a zebrafish xenograft model and U2-OS cells. MATERIALS AND METHODS: CCK-8 assay, DAPI and γ-H2A.X immunofluorescence staining, and flow cytometry (apoptosis verification) were employed to determine the anti-proliferative and pro-apoptotic effects of TS. qPCR and Western blot were used to examine TS's molecular actions and mechanism on apoptosis of U2-OS cells. RESULTS: The in vivo data showed that TS significantly inhibited U2-OS tumor growth in larval zebrafish from 2 to 20 ng/mL. In vitro data indicated that TS exerted significant anti-proliferative and pro-apoptotic effects on U2-OS cells in a dose-dependent manner. Moreover, TS has no inhibitory effect on bMSCs, suggesting its safety on normal bone-forming cells. Molecular data illustrated that TS obviously activated the p53 signaling-related proteins (p-p53, Bax, CASP3, CASP9) and its upstream JNK (p-JNK, p-c-JUN) and ATM (p-ATM) signaling molecules through phosphorylation and cleavage, followed by up-regulation of the pro-apoptotic genes, NOXA, PUMA, TP53, BAX, and BIM, and down-regulation of Bcl-2 protein. CONCLUSION: In sum, TS specifically induced apoptosis of U2-OS cells by activating p53 signaling pathways, indicating TS as a promising candidate for OS treatment.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Salvia miltiorrhiza , Adolescente , Animales , Apoptosis , Neoplasias Óseas/tratamiento farmacológico , Ácidos Cafeicos , Línea Celular Tumoral , Proliferación Celular , Humanos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Osteosarcoma/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra , Proteína X Asociada a bcl-2/metabolismo
6.
J Ethnopharmacol ; 291: 115167, 2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35271947

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: According to the theory and practice of traditional Chinese medicine (TCM), the pathogenesis of lung carcinoma is associated with many syndromes, such as "sputum stasis", "cough", "lung fever", "lung toxin", and "hemoptysis", which should be removed for therapeutic purpose. Tea is not only a world-wide beverage, but also a TCM herb, possessing activities against the above syndromes. Recently, green tea extract exerted inhibitory effects on a variety of tumor cells. As a pigment active substance of green tea, theabrownin (TB) has been found to inhibit many cancer cells. AIM OF THE STUDY: This study focused on the efficacy and mechanism of TB on non-small cell lung cancer (NSCLC) cell lines. The in vivo efficacy of TB on p53-deficient NSCLC (H1299) cells and p53-wild type NSCLC (A549) cells NSCLC cells were determined, and its mechanism of action was explored. MATERIALS AND METHODS: In vivo, two lung cancer cell lines, H1299 (p53-deficient) and A549 (p53-wild type) were selected to establish xenograft models of larval zebrafish, respectively. For in vitro experiments, wound healing assay, DAPI staining, TUNEL assay, immunofluorescence assay, and flow cytometry were conducted in these two cell lines. RNA sequencing (RNAseq), real time PCR (qPCR) and Western blot (WB) were performed for the mechanism study. RESULTS: The in vivo results showed that TB significantly inhibited the H1299 and the A549 xenograft tumor growth in larval zebrafish (dosage ranged from 2.13 to 21.3 µg/ml). Wound healing assay results showed that TB suppressed the migration of H1299 cells. DAPI staining, TUNEL assay, and immunofluorescence assay results showed that TB inhibited the growth of H1299 cells by inducing apoptosis. RNAseq, qPCR and WB data showed that TB significantly up-regulated the MAPK/JNK pathway-related proteins (ASK-1, JNK and c-JUN) through phosphorylation activation, accompanying with down-regulation of the epithelial-mesenchymal transition (EMT)-associated genes (N-CADHERIN, SLUG, FIBROWNECTIN and ZEB1) and anti-apoptotic molecules (BCL-2), and up-regulation of the metastasis-related gene HSPA6 and the pro-apoptotic molecules (BIM, BAX, PARP, c-PARP, γ-H2A.X, c-CASP3, c-CASP8, c-CASP9, DDIT3 and DUSP8). CONCLUSION: This study determined the in vivo efficacy of green tea-derived TB on p53-deficient NSCLC (H1299) cells and p53-wild type NSCLC (A549) cells and clarified its p53-independent mechanism mediated by the activation of MAPK/JNK signaling pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/patología , Catequina/análogos & derivados , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Xenoinjertos , Humanos , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas , , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra
7.
Front Mol Biosci ; 8: 648823, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179074

RESUMEN

Lumbar disc herniation (LDH) possesses complex pathogenesis, which has not been well elucidated yet. To date, specific or early diagnosis of LDH remains unavailable, resulting in missed opportunity for effective treatment. According to Traditional Chinese medicine (TCM) theory, LDH can be divided into two subtypes (reality syndrome and deficiency syndrome). The purpose of this study was to analyze the metabolic disorders of LDH and its TCM subtypes and screen out potential biomarkers for LDH diagnosis. Gas chromatography coupled with mass spectrometry (GC-MS) was applied to test the urine samples from 66 participants (30 healthy volunteers, 18 LDH patients with deficiency syndrome and 18 patients with reality syndrome). PCA analysis showed a distinct separation tendency between the healthy subjects and LDH patients but no obvious separation between the different syndromes (reality syndrome and deficiency syndrome) of LDH patients. As a result, 23 metabolites were identified significantly altered in the LDH patients, as compared with the healthy subjects. The altered metabolites belong to amino acid metabolism, nucleic acid metabolism, carbohydrate metabolism, and vitamin metabolism, which are related to osteoporosis and inflammation. Our results indicate metabolic disorders of LDH and thereby propose a group of metabolic biomarkers for potential application in early diagnosis of LDH in clinic, which provide a reasonable explanation for the pathogenesis of LDH.

8.
Biomed Pharmacother ; 138: 111421, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33752061

RESUMEN

Allergic asthma is one of the inflammatory diseases, which has become a major public health problem. Qu zhi qiao (QZQ), a dry and immature fruit of Citrus paradisi cv. Changshanhuyou, has various flavonoids with pharmacological properties. However, there is a knowledge gap on the pharmacological properties of QZQ on allergic asthma. Therefore, here, we explored the efficacy and mechanism of total flavonoids from QZQ (TFCH) on allergic asthma. We extracted and purified TFCH and conducted animal experiments using an Ovalbumin (OVA)-induced mice model. Bronchoalveolar lavage fluid and Swiss-Giemsa staining were used to count different inflammatory cells in allergic asthma mice. We conducted histopathology and immunohistochemistry to evaluate the changes in the lungs of allergic asthma mice. Moreover, we used ELISA assays to analyze chemokines and inflammatory cytokines. Furthermore, western blot analyses were conducted to elucidate the mechanism of TFCH on allergic asthma. We established that TFCH has anti-inflammatory effects and inhibits airway remodeling, providing a potential therapeutic strategy for allergic asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Asma/prevención & control , Citrus paradisi , Flavonoides/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteína Smad2/antagonistas & inhibidores , Proteína smad3/antagonistas & inhibidores , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Animales , Asma/inducido químicamente , Asma/metabolismo , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Femenino , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Frutas , Masculino , Ratones , Ratones Endogámicos BALB C , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Ovalbúmina/toxicidad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína Smad2/metabolismo , Proteína smad3/metabolismo
9.
Front Pharmacol ; 11: 1053, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848727

RESUMEN

BACKGROUND: As a degenerative joint disease with severe cartilage destruction and pain, osteoarthritis (OA) has no satisfactory therapy to date. In traditional Chinese medicine (TCM), Aconitum carmichaeli Debeaux derived Hei-shun-pian (Hsp) has been developed for joint pain treatment. However, it causes adverse events in OA patients. Long-time decoction has been traditionally applied to reduce the aconite toxicity of Hsp and other aconite herbs, but its detoxifying effect is uncertain. METHODS: Hsp was extracted with dilute decoction times (30, 60, and 120 min) and evaluated by toxicological, chemical, pharmacological assays. Acute toxicity assay and chemical analysis were employed to determine the toxicity and chemoprofile of Hsp extracts, respectively. Since the detoxified Hsp (dHsp) was defined, its therapeutic effect was evaluated by using an OA rat model induced by monosodium iodoacetate. dHsp at 14 g/kg was orally administered for 28 days, and the pain assessments (mechanical withdrawal threshold and thermal withdrawal latency) and histopathological analyses (HE and safranin-O staining) were performed. Real-time PCR (qPCR) was applied to determine the molecular actions of dHsp on cartilage tissue and on chondrocytes. MTT assay was conducted to evaluate the effect of dHsp on the cell viability of chondrocytes. The cellular and molecular assays were also conducted to analyze the functions of chemical components in dHsp. RESULTS: The chemoprofile result showed that the contents of toxic alkaloids (aconitine, mesaconitine, and hypaconitine) were decreased but that of non-toxic alkaloids (benzoylaconitine, benzoylmesaconitine, and benzoylhypaconitine) were increased with increasing decoction time. Acute toxicity assay showed that only Hsp extract with 120 min decoction was non-toxic within the therapeutic dose range. Thus, it was defined as dHsp for further experiment. In OA experiment, dHsp significantly attenuated joint pain and prevented articular degeneration from MIA attack. qPCR data showed that dHsp restored the abnormal expressions of Col10, Mmp2, Sox5, Adamts4/5/9, and up-regulated Col2 expression in rat cartilage. In vitro, dHsp-containing serum significantly proliferated rat chondrocytes and regulated the gene expressions of Col2, Mmp1, Adamts9, and Aggrecan in a similar way as the in vivo data. Moreover, aconitine, mesaconitine, and hypaconitine exerted cytotoxic effects on chondrocytes, while benzoylaconitine and benzoylhypaconitine except benzoylmesaconitine exhibited similar molecular actions to dHsp, indicating contributions of benzoylaconitine and benzoylhypaconitine to dHsp. CONCLUSIONS: This study defined dHsp and demonstrated dHsp as a potential analgesic and disease modifying agent against OA with molecular actions on the suppression of chondrocyte hypertrophy and extracellular matrix degradation, providing a promising TCM candidate for OA therapy.

10.
Cell Death Dis ; 11(7): 542, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681092

RESUMEN

Colorectal cancer (CRC) is a common malignancy with high occurrence and mortality worldwide. In recent years, the overall survival rate of CRC patients has been improved because of the advances in early diagnosis and therapy. However, the prognosis of CRC patients at the advanced stage is still poor due to high recurrence rate and metastasis. The function of circular RNA (circRNA) ArfGAP with FG repeats 1 (circAGFG1) has been explored in non-small-cell lung cancer and triple-negative breast cancer. Nevertheless, its role in CRC is not clear. In this study, circAGFG1 was upregulated in CRC cell lines. CircAGFG1 silencing significantly suppressed cell proliferation, migration, invasion, and stemness, while promoted cell apoptosis in CRC. Meanwhile, we found that circAGFG1 also accelerated CRC tumor growth and metastasis in vivo. Importantly, circAGFG1 activated Wnt/ß-catenin pathway through regulating CTNNB1. Afterwards, YY1 was found to transcriptionally activate CTNNB1. Furthermore, circAGFG1 directly sponged miR-4262 and miR-185-5p to upregulate YY1 expression. Eventually, rescue assays demonstrated that the effect of circAGFG1 silencing on CRC cell functions was observably reversed by upregulating YY1 or CTNNB1. In brief, our findings uncovered that circAGFG1 modulated YY1/CTNNB1 axis to drive metastasis and stemness in CRC by sponging miR-4262 and miR-185-5p.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , ARN Circular/metabolismo , Factor de Transcripción YY1/metabolismo , beta Catenina/metabolismo , Adulto , Anciano , Animales , Apoptosis/genética , Secuencia de Bases , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Metástasis de la Neoplasia , ARN Circular/genética , Transcripción Genética , Regulación hacia Arriba/genética , Vía de Señalización Wnt , beta Catenina/genética
11.
Phytomedicine ; 64: 153082, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31541796

RESUMEN

BACKGROUND: Citrus flavonoids, consisting of naringin, narirutin, neohesperidine, etc., have therapeutic activities for the treatment of lipometabolic disorders. The peel of Citrus changshan-huyou (Qu Zhi Ke, QZK) is a new source of flavonoids, but attracted little attention so far. HYPOTHESIS: QZK should possess therapeutic effects against lipometabolic disorders due to the flavonoids it contains. STUDY DESIGN: In this study, we extracted and purified the flavonoids of QZK (TFCH) and established an obesity-induced non-alcoholic fatty liver disease (NAFLD) model of rats. TFCH was given orally for 8 weeks, and its anti-NAFLD effects and potential mechanism were evaluated. METHODS: The flavonoid chemoprofile of TFCH was determined by using HPLC. High-fat diet was employed to induce NAFLD model in rats, and six groups were set up: negative control group, reference treatment group, model group, low-dose TFCH (25 mg/kg), intermediate-dose TFCH (50 mg/kg), and high-dose TFCH (100 mg/kg). Serum and liver levels of inflammatory cytokines and NAFLD markers were measured biochemically. The relative mRNA expressions of liver T-bet, GATA3, and TNF-α were tested by real time PCR (qPCR) analysis. The protein expression of p38 and the phosphorylation of NF-κB, ERK1/2, and p38 in liver were tested by Western blot analysis. RESULTS: The histopathological observation showed that TFCH attenuated hepatic lesions with significantly decreased NAFLD activity scores. The biochemical data showed that TFCH significantly suppressed both systemic and intrahepatic inflammation by inhibiting IL-1ß, IL-6, IL-12, TNF-α, and IFN-γ, and the qPCR analysis revealed a Th1/Th2 related anti-inflammatory mechanism of TFCH. Western blot results clarified that TFCH exerted hepatoprotective and anti-inflammatory effects by suppression of phosphorylated NF-κB and MAPKs, indicating a mechanism associated with NF-κB and MAPK signaling pathways. CONCLUSION: QZK is a new source of Citrus flavonoids for therapeutic use, and TFCH is a promising representative of Citrus flavonoids for anti-NAFLD therapy.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Citrus/química , Flavonoides/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Sustancias Protectoras/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Dieta Alta en Grasa/efectos adversos , Flavonoides/química , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Sustancias Protectoras/química , Ratas Sprague-Dawley
12.
Aging (Albany NY) ; 11(9): 2797-2811, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31089001

RESUMEN

Platelet lysate (PL) contains a cocktail of growth factors that actively participates in cartilage repair. This study was designed to determine the effect and mechanism of PL on osteoarthritis (OA). An arthritis model was established to mimic human OA by intra-articular injection of monoiodoacetate (MIA) to Sprague Dawley (SD) rats. The model was weekly treated with PL by intra-articular injection. Thermal withdrawal latency, mechanical withdrawal threshold, and treadmill gait were tested for pain behavior observation. Histopathological and immunohistochemical analyses were conducted for evaluating cartilage degradation. Real time PCRs and Western blots were conducted to elucidate the mechanism of PL on primary chondrocytes. Results showed that, in vivo, PL significantly attenuated pain symptoms and exerted chondrocyte-protective and extracellular matrix (ECM)-modifying effect on the arthritic cartilage in a dose-dependent manner. The in situ expressions of type II Collagen (Col2) and matrix metalloproteinase 13 (Mmp13) in the arthritic cartilage was abnormal and was restored by PL. In vitro, PL significantly restored tumor necrosis factor α (TNF-α)-suppressed anabolic gene expression (Col2 and aggrecan) and TNF-α-increased catabolic gene expression (Col10, Mmp13, Adamts5, and Adamts9) in chondrocytes. The effects were mediated by TNF-α downstream signaling, including inhibition of NF-κB and c-Jun activities. This study provides certain knowledge of anti-OA effect and TNF signaling-related mechanism of PL, placing it as a promising and alternative option for OA therapy in the future.


Asunto(s)
Artritis/inducido químicamente , Plaquetas/química , Condrocitos/efectos de los fármacos , Ácido Yodoacético/farmacología , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Analgésicos/uso terapéutico , Animales , Artritis/metabolismo , Supervivencia Celular , Condrocitos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , FN-kappa B/genética , Osteoartritis/tratamiento farmacológico , Dolor/tratamiento farmacológico , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
13.
J Ethnopharmacol ; 231: 545-554, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30529425

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Osteoarthritis (OA), characterized by joint pain and cartilage degradation, is the most common form of joint disease worldwide but with no satisfactory therapy available. The ethanol extract of Agkistrodon acutus (EAA) has been widely used as a traditional Chinese medicine (TCM) for the treatment of arthralgia and inflammatory diseases, but there is no report regarding its efficacy on OA to date. Here, we determined the effects of EAA on the pain behavior and cartilage degradation in vivo and clarified its target genes and proteins associated with chondrocyte hypertrophy and apoptosis in vitro. MATERIALS AND METHODS: In vivo OA model was established by intra-articular injection (1.5 mg) of monosodium iodoacetate (MIA) into rats and weekly treated by intra-articular administration of EAA at a dose range from 0.3 to 0.9 g/kg for four weeks. The pain behavior parameters, thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) were tested before and after the treatment. Then histopathologic, immunohistochemical and TUNEL analyses of the articular cartilage were conducted, followed by Mankin's scoring. In vitro, the effects of EAA on chondrocytes were evaluated via assays of cell viability, immunofluorescence, real time PCR, and Western blot. UPLC-MS was applied to determine the chemical composition of EAA. RESULTS: The animal data showed that EEA not only attenuated the pain hypersensitivity but also blocked the cartilage degeneration by improving chondrocyte survival and suppressing chondrocyte apoptosis at a dose-dependent manner in OA rats. Furthermore, EAA remarkably restored the abnormal expression of collagen type II (Col2) and matrix metalloproteinase-13 (MMP13) in cartilage of OA rats. The cellular data showed that EAA significantly increased the cell viability of chondrocytes against OA-like damage and restored the abnormal expressions of Col2 and MMP13 in damaged chondrocytes. The molecular data showed that EAA significantly restored the abnormal mRNA expressions of Col2, Col10, MMP2 and MMP13 as well as the abnormal protein expressions of MMP13, PARP (total and cleaved) in chondrocytes under pathological condition. UPLC-MS analysis showed the known main components of EAA, including amino acides (glycine, L-aspartic acid, L-glutamic acid, and L-hydroxyproline), nucleoside (uridine), purines (xanthine and hypoxanthine), and pyrimidine (uracil). CONCLUSIONS: Our data demonstrate that EAA exerts antinociceptive and chondroprotective effects on OA through suppressing chondrocyte hypertrophy and apoptosis with restoration of the molecular expressions of anabolism and catabolism in chondrocytes. It provides a promising TCM candidate of novel agent for OA therapy.


Asunto(s)
Agkistrodon , Analgésicos/uso terapéutico , Mezclas Complejas/uso terapéutico , Osteoartritis/tratamiento farmacológico , Dolor/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Condrocitos/efectos de los fármacos , Condrocitos/patología , Hipertrofia/inducido químicamente , Hipertrofia/tratamiento farmacológico , Hipertrofia/patología , Ácido Yodoacético , Masculino , Osteoartritis/inducido químicamente , Osteoartritis/patología , Dolor/inducido químicamente , Dolor/patología , Ratas Sprague-Dawley
14.
Front Pharmacol ; 9: 1360, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532708

RESUMEN

Fructus Ligustri Lucidi (FLL) has been widely used as a traditional Chinese medicine (TCM) for treating soreness and weakness of waist and knees. It has potential for treating OA owing to its kidney-tonifying activity with bone-strengthening effects, but there is so far no report of its anti-OA effect. This study established a rat OA model by intra-articular (IA) injection of mono-iodoacetate (1.5 mg) and weekly treated by IA administration of FLL at 100 µg/mL for 4 weeks. Thermal withdrawal latency, mechanical withdrawal threshold, and spontaneous activity were tested for evaluation of pain behavior, and histopathological (HE, SO, and ABH staining) and immunohistochemical (Col2, Col10, and MMP13) analyses were conducted for observation of cartilage degradation. In vitro effect of FLL on chondrocytes was evaluated by MTT assay and qPCR analysis. Moreover, HPLC analysis was performed to determine its chemoprofile. The pain behavioral data showed that FLL attenuated joint pain hypersensitivity by increasing thresholds of mechanical allodynia and thermal hyperalgesia as well as spontaneous activity. The histopathological result showed that FLL reversed OA cartilage degradation by protecting chondrocytes and extracellular matrix in cartilage, and the immunohistochemical analysis revealed its molecular actions on protein expressions of MMP13, Col2, and Col10 in cartilage. The MTT assay showed its proliferative effects on chondrocytes, and qPCR assay clarified its mechanism associated with gene expressions of Mmp13, Col2, Col10, Adamts5, Aggrecan, and Runx2 in TNF-α treated chondrocytes. Our results revealed an anti-OA effect of FLL on pain behavior and cartilage degradation in OA rats and clarified a molecular mechanism in association with the suppression of chondrocyte hypertrophy and catabolism. IA FLL can be regarded as novel and promising option for OA therapy.

15.
Zhongguo Zhong Yao Za Zhi ; 43(21): 4317-4322, 2018 Nov.
Artículo en Chino | MEDLINE | ID: mdl-30583635

RESUMEN

Zebrafish of different strains with 5 dpf (5 days post-fertilization) were selected and fed with 0.2% high-fat diet for 8 h and 3% glucose solution for 16 halternatively during the day and night for 4 consecutive days. The zebrafish model was established and randomly divided into model group, Huangdi Anxiao Capsules (260 mg·L⁻¹) group and pioglitazone (32 mg·L⁻¹) group. The drug treatment groups were given the water-soluble drugs, with a volume of 25 mL, and incubated in a 28 °C incubator for 4 days. To detect the exposure to the corresponding drugs, the normal control group was set up. Thirty zebrafish were included in each group. The effect of Huangdi Anxiao Capsules on vascular wall thickness, fluorescence intensity of islet beta cells, fluorescence intensity of macrophages, and blood flow velocity of zebrafish were detected. The expressions of vascular endothelial growth factor (vegfaa) and angiotensin converting enzyme (ACE) were detected by RT-PCR. The results showed that compared with the model group, Huangdi Anxiao Capsules can significantly reduce the thickness of the blood vessel wall, increase the fluorescence intensity of islet ß cells and macrophages, increase the blood flow velocity in vivo, and decrease the ACE and vegfaa expressions in zebrafish. It is suggested that Huangdi Anxiao Capsules may alleviate zebrafish vascular lesions by regulating the expressions of ACE and vegfaa.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Enfermedades Vasculares/tratamiento farmacológico , Pez Cebra , Animales , Cápsulas , Dieta Alta en Grasa/efectos adversos , Glucosa/efectos adversos , Peptidil-Dipeptidasa A/metabolismo , Distribución Aleatoria , Enfermedades Vasculares/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo
16.
EXCLI J ; 17: 889-899, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564068

RESUMEN

Many herbs of traditional Chinese medicine (TCM) possess not only therapeutic efficacy, but also toxicity towards normal tissues. The herbal toxicities occasionally cause serious adverse events or even fatal poisoning due to the erroneous use of TCM herbs. Fuzi (lateral root of Aconitum carmichaeli) is such an herb with its toxic ingredient, aconites. Aconitine, mesaconitine, and hypaconitine are the main toxic components of Fuzi, which are hydrolyzed into non-toxic derivatives by water decoction. Therefore, long-time decoction was commonly applied as a traditional way to detoxify Fuzi before use. Nevertheless, recent clinical trials presorted on adverse events induced by long-time decocted Fuzi, putting some doubt on the safety of Fuzi after the traditional detoxification procedure. To thoroughly determine whether or not long-time decocted Fuzi was safe, we conducted in vivo acute toxicity assays using both rodent and zebrafish models and performed chemoprofile analyses using HPLC and UPLC-MS. The HPLC analysis showed that toxic aconitine components were hydrolyzed into benzoyl derivatives with increasing time of decoction. These aconitines were undetected by HPLC in Fuzi after 2 h-decoction (FZ-120), indicating seemingly non-toxicity of FZ-120. Unlike the non-decocted Fuzi (FZ-0) and 60 min-decocted Fuzi (FZ-60) with lethal toxicity, FZ-120 at 130 g/kg did not cause any deaths or side effects in mice regarding body weight and biochemical parameters. This seems to confirm safety of Fuzi after long-time decoction. However, histopathological observations revealed an abnormal liver phenotype and a significant decrease of the liver index following FZ-120 treatment, indicating a potential hepatoxicity of FZ-120. By using a zebrafish model, we observed that FZ-120 at a dose range from 288 to 896 µg/ml caused considerable adverse events including arrhythmia, liver degeneration, yolk sac absorption delay, length decrease, and swim bladder loss, which clearly speak for acute toxicity on cardiovascular, digestive, development, and respiratory systems. The dose range of FZ-120 was lower than that used for clinical application in human beings. Moreover, UPLC-MS revealed that FZ-120 still contained toxic aconitines that were not detectable by HPLC, which might explain its acute toxicity in zebrafish. We concluded that Fuzi is not sufficiently safe even after long-time decoction. The zebrafish model combined with UPLC-MS assay may represent an appropriate test system to unravel aconitine-related acute toxicity.

17.
Oncol Lett ; 16(4): 4640-4648, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30197678

RESUMEN

Colorectal carcinoma (CRC) is the most frequent malignant disease of the gastrointestinal tract and it has a poor prognosis. The current treatment options for CRC are far from optimal; they have limited efficacy and toxic effects. Chinese ginseng (the dried root of Panax ginseng) is a medicinal herb, of which ginsenosides are the most effective anticancer component. The aim of the present study was to evaluate the anti-CRC effect of total ginsenosides of Chinese ginseng (TGCG), by analyzing the cellular and molecular pathways. This was done via MTT assay, morphological observation (DAPI staining), flow cytometry for cell cycle and apoptosis analyses, reverse transcription-quantitative polymerase chain reaction and western blot analysis. The results revealed that TGCG inhibited cell proliferation and induced cell cycle arrest and cell apoptosis in HT-29 cells in a dose-dependent manner. The mRNA expression of CDK2, CDK4, CDK6, BAX, CDKN2B, CASP8, CASP3, TP53, TOP1, MYC, MDM2, and CCND1 and the protein expression of cyclin-dependent kinase (Cdk) 2, Cdk4, Cyclin D1, Bax, p21WAF1, p27Kip1, c-Myc, p15INK4b, and p53 were revealed to be modulated by TGCG in HT-29 cells, and are all factors associated with DNA damage, cell proliferation, cell cycle and apoptosis. In conclusion, TGCG induced cell cycle arrest at the G0/G1 and G2/M phases and induced apoptosis in HT-29 cells through the c-Myc- and p53-mediated signaling pathways, possibly in response to DNA damage. Therefore, TGCG may be regarded a promising candidate for development as an anticancer agent for the treatment of CRC.

18.
Am J Chin Med ; 45(5): 1093-1111, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28659032

RESUMEN

Epimedin C is one of the chemical markers and major flavonoids in Herba Epimedii (Yinyanghuo), which is traditionally used to treat bone diseases and gonadal dysfunction in China. Our previous study indicated that epimedin C could induce endothelial-like, but not osteogenic differentiation of C3H/10T1/2 cells in vitro. As vasculogenesis plays a pivotal role in bone formation, this study used the bone morphogenetic protein 2 (BMP2) induced ectopic bone formation model and mice 4T1 breast cancer cells co-implanted with luciferase labeled C3H/10T1/2 cells (4T1 [Formula: see text] C3H/10T1/2-Luc) model to examine the in vivo effects of Epimedin C on vasculogenesis. As a result, Epimedin C significantly increased the bone weight and blood perfusion of mice in the BMP2 induced ectopic osteogenesis model, and the bone in Epimedin C [Formula: see text] BMP2 group was more mature than that in BMP2 group. In addition, the tumor weight, blood perfusion and tumor-associated angiogenesis were also significantly increased in the Epimedin C treated 4T1 tumor bearing mice. The mRNA levels of endothelial markers, such as the platelet endothelial adhesive factor-1(CD31), the endothelial cell specific molecule-1(ESM-1), and the vascular von Willebrand factor (vWF) in mouse 4T1 mammary tumor tissue, were commonly found to occur alongside the luciferase (labeled in C3H/10T1/2 cells) expression and significantly increased after Epimedin C treatment. Taken together, Epimedin C can effectively promote vascularization both in the BMP2-depended bone formation model and in the 4T1 mammary tumor-bearing model by inducing an endothelial-like differentiation of C3H/10T1/2 in BALB/c nude mice.


Asunto(s)
Proteína Morfogenética Ósea 2 , Diferenciación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Células Endoteliales/citología , Flavonoides/farmacología , Neoplasias Mamarias Experimentales/irrigación sanguínea , Neovascularización Patológica , Osificación Heterotópica , Osteogénesis/efectos de los fármacos , Animales , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Flavonoides/aislamiento & purificación , Flavonoides/uso terapéutico , Ratones Endogámicos BALB C , Ratones Desnudos , Fitoterapia
19.
Front Pharmacol ; 8: 75, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28289384

RESUMEN

Green tea, the fresh leaves of Camellia sinensis, is not only a health-promoting beverage but also a traditional Chinese medicine used for prevention or treatment of cancer, such as lung cancer. Theabrownin (TB) is the main fraction responsible for the medicinal effects of green tea, but whether it possesses anti-cancer effect is unknown yet. This study aimed to determine the in vitro and in vivo anti-lung cancer effect of TB and explore the underlying molecular mechanism, by using A549 cell line and Lewis lung carcinoma-bearing mice. In cellular experiment, MTT assay was performed to evaluate the inhibitory effect and IC50 values of TB, and flow cytometry was conducted to analyze the cell cycle progression affected by TB. In animal experiment, mice body mass, tumor incidence, tumor size and tumor weight were measured, and histopathological analysis on tumor was performed with Transferase dUTP nick-end labeling staining. Real time PCR and western blot assays were adopted to detect the expression of C-MYC associated genes and proteins for mechanism clarification. TB was found to inhibit A549 cell viability in a dose- and time-dependent manner and block A549 cell cycle at G0/G1 phase. Down-regulation of c-myc, cyclin A, cyclin D, cdk2, cdk4, proliferation of cell nuclear antigen and up-regulation of p21, p27, and phosphate and tension homolog in both gene and protein levels were observed with TB treatment. A c-myc-related mechanism was thereby proposed, since c-myc could transcriptionally regulate all other genes in its downstream region for G1/S transitions of cell cycle and proliferation of cancer cells. This is the first report regarding the anti-NSCLC effect and the underlying mechanism of TB on cell cycle progression and proliferation of A549 cells. The in vivo data verified the in vitro result that TB could significantly inhibit the lung cancer growth in mice and induce apoptosis on tumors in a dose-dependent manner. It provides a promising candidate of natural products for lung cancer therapy and new development of anti-cancer agent.

20.
J Ethnopharmacol ; 196: 253-260, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-27988397

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hedyotis diffusa is an ethno-medicine used for anti-cancer treatment in the clinic of traditional Chinese medicine (TCM). The total coumarins of Hedyotis diffusa (TCHD) was a selected extract with observed antiproliferative activity, which has not been tested in treatment of myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML). AIM OF THE STUDY: This study aimed to evaluate the apoptosis-inducing effect of TCHD on human MDS cell line (SKM-1) and explore its action mechanism in association with caspase family and PI3K/Akt signaling pathway. MATERIALS AND METHODS: The chemical constituents and total coumarins content of TCHD were determined by High Performance Liquid Chromatography-tandem mass spectrometry (HPLC-MS/MS) and UV-vis spectrophotometry, respectively. MTT assay, Hoechst 33258 staining, and Annexin V-FITC/PI double labeling were applied to evaluate TCHD's efficacy on SKM-1 cells. Western blot analysis was also used to clarify the action mechanism of TCHD on protein expression level. RESULTS: Two compounds, p-coumaric acid and E-6-O-p-coumaroyl scandoside methyl ester, were identified in TCHD, and its total coumarins content reached 87.4%. By MTT assay, apoptosis-inducing effect of TCHD on SKM-1 cells was found in a dose-dependent manner after 24-48h treatment, with IC50 values of 104.48µg/ml and 100.66µg/ml, respectively. Morphological and flow cytometry observation also confirmed such effect of TCHD. Western blot analysis clarified its action mechanism associating with the activation of caspases and inhibition of PI3K/Akt pathway proteins. CONCLUSIONS: This is the first report regarding the apoptosis-inducing efficacy and mechanism of TCHD on SKM-1 cells, providing a promising candidate of TCM for MDS and AML therapy with fewer side effects.


Asunto(s)
Cumarinas/farmacología , Hedyotis , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Síndromes Mielodisplásicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA